Cho hình bình hành ABCD,O là giao của hai đường chéo.H là hình chiếu của A trên OD.Biết rằng các góc DAH,OAB,HAO bằng nhau.Chứng minh ABCD là hình chữ nhật
Cho hình bình hành ABCD , O là giao điểm của hai đường chéo, H là hình chiếu của A trên OD . Biết rằng các góc DAH ; HAO ; OAB bằng nhau . Chứng minh ABCD là hình chữ nhật.
Cho hình bình hành ABCD,O là giao điểm của hai đường chéo. AH vuông góc BD .Biết các góc DAH;HAO;OAB bằng nhau.CMR ABCD là hình chữ nhật.
gọi góc DAH = góc HAO =góc OAB = x
Xét tam giác OAD cân tại A(....)
=> góc ADH = 90 độ - x (1)
=> góc DOC = 180 độ - 2x (góc ngoài)
_góc ACD=x ( soletrong ...)
Xét tam giác ODC có
góc ODC = 180 độ - góc ACD - góc DOC
=180 độ - 180 độ + 2x -x
= x
=> góc ODC = x (2)
từ (1) và (2) => góc ADC = 90 độ - x + x =90 độ
=> H.B.Hành có 1 góc vg=> đó là Hình Chữ Nhật (dpcm)
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH. Gọi I, K theo thứ tự là hình chiếu của H trên AB, AC. Gọi M là trung điểm của BC. Chứng minh rằng AM vuông góc với IK.
Bài 2: Cho hình bình hành ABCD, O là giao điểm hai đường chéo, H là hình chiếu của A trên OD. Biết rằng các góc DAH, HAO, OAB bằng nhau. Chứng minh rằng ABCD là hình chữ nhật.
Lời giải:
Xét tam giác ADH và AOH có:
\(\widehat{DAH}=\widehat{OAH}\) (gt)
\(\widehat{AHD}=\widehat{AHO}=90^0\)
AH chung
\(\Rightarrow \triangle ADH=\triangle AOH(g.c.g)\) (1)
\(\Rightarrow AD=AO\Rightarrow \frac{AD}{AO}=1\)
Xét tam giác ADH và AOK có:
\(\widehat{AHD}=\widehat{AKO}=90^0\)
\(\widehat{DAH}=\widehat{OAB}=\widehat{OAK}\) (gt)
\(\Rightarrow \triangle ADH\sim \triangle AOK(g.g)\Rightarrow \frac{AH}{AK}=\frac{DH}{OK}=\frac{AD}{AO}=1\Rightarrow AH=AK;DH=OK\)
Vì AO là phân giác của \(\widehat{HAB}\) nên theo tính chất đường phân giác thì:
\(\frac{AH}{AB}=\frac{OH}{OB}\)
Trong đó \(OH=DH\) (do (1)) nên \(OH=\frac{1}{2}OD\). Mà \(OD=OB\) theo tính chất hình bình hành
\(\Rightarrow \frac{AH}{AB}=\frac{OH}{OB}=\frac{1}{2}\)
Mà \(AH=AK\Rightarrow AK=\frac{1}{2}AB\Rightarrow AK=KB\)
Tam giác AOB có OK vừa là đường cao vừa là đường trung tuyến nên tam giác AOB cân tại O. Do đó OA=OB hay AC=BD nên ABCD là hình chữ nhật (đpcm).
Ai giúp mình làm mấy câu này với
1: Cho hình bình hành ABCD, gọi O là giao điểm của hai đường chéo, H là hình chiếu của A trên OD. Biết rằng các góc DAH, HAO,OAD bằng nhau. CMR: ABCD là Hình chữ nhật
2: Cho tam giác ABC vuông tại A, đường cao AH. Gọi I và K theo thứ tự là hình chiếu của H trên AD và AC, gọi M là trung điểm của BC. CMR: AM vuông góc với IK
câu 1
gọi góc DAH = góc HAO =góc OAB = x
Xét tam giác OAD cân tại A(....)
=> góc ADH = 90 độ - x (1)
=> góc DOC = 180 độ - 2x (góc ngoài)
_góc ACD=x ( soletrong ...)
Xét tam giác ODC có
góc ODC = 180 độ - góc ACD - góc DOC
=180 độ - 180 độ + 2x -x
= x
=> góc ODC = x (2)
từ (1) và (2) => góc ADC = 90 độ - x + x =90 độ
=> H.B.Hành có 1 góc vg^ => đó là H.C.Nhật (dpcm)
CHO HÌNH BÌNH HÀNH ABCD CÓ O LÀ GIAO ĐIỂM CỦA 2 ĐƯỜNG CHÉO , H LÀ HÌNH CHIẾU CỦA A TRÊN OD BIẾT DAH=HAO=OAB.CMR:ABCD LÀ HÌNH CHỮ NHẬT.
giúp mình bài toán hình này nha, toán 8
1)cho hình vuông ABCD, E là điểm nằm trong hình vuông sao cho góc EDC=góc ECD=15o. F là điểm nàm ngoài hình vuông sao cho góc FBC=góc FCB=60o. Chứng minh:
a)Tam giác AB đều; b) D,E,F thẳng hàng
2) Hai đường chéo của hình bình hành ABCD cắt tại O. M,N,P,Q theo thứ tự là giao điểm các đường phân giác của các tam guacs OAB;OBC;OCD;ODA
a) CM: tứ giác MNPQ là hình thoi
b) Hình bình hành ABCD phải có thêm điều kiện gì để tứ giác MNPQ là hình vuông
3)cho hình chữ nhật ABCD , BH vuông góc với AC. gọi M,K lần lượt là trung điểm của HC và AD. chứng minh BM vuông góc với KM.
giúp mình bài toán hình này nha, toán 8
1)cho hình vuông ABCD, E là điểm nằm trong hình vuông sao cho góc EDC=góc ECD=15o. F là điểm nàm ngoài hình vuông sao cho góc FBC=góc FCB=60o. Chứng minh:
a)Tam giác AB đều; b) D,E,F thẳng hàng
2) Hai đường chéo của hình bình hành ABCD cắt tại O. M,N,P,Q theo thứ tự là giao điểm các đường phân giác của các tam guacs OAB;OBC;OCD;ODA
a) CM: tứ giác MNPQ là hình thoi
b) Hình bình hành ABCD phải có thêm điều kiện gì để tứ giác MNPQ là hình vuông
3)cho hình chữ nhật ABCD , BH vuông góc với AC. gọi M,K lần lượt là trung điểm của HC và AD. chứng minh BM vuông góc với KM.
cho hình bình hành ABCD có 2 đường chéo AC,BD cắt nhau tại O thoả mãn góc OAB=góc ODC chứng minh ABCD là hình chữ nhật
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
AB//CD
=>góc OAB=góc OCD
mà góc OAB=góc ODC
nên góc ODC=góc OCD
=>OC=OD
=>AC=BD
Xét hình bình hành ABCD có AC=BD
nên ABCD là hình chữ nhật