Những câu hỏi liên quan
Không Tên
Xem chi tiết
Không Tên
Xem chi tiết
Không Tên
Xem chi tiết
Kiệt Nguyễn
21 tháng 7 2020 lúc 20:58

Theo giả thiết, ta có: \(a^2b^2+b^2c^2+c^2a^2=a^2b^2c^2\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)

Áp dụng BĐT AM - GM cho 5 số, ta được: \(\hept{\begin{cases}a.a.a.b.b\le\frac{a^5+a^5+a^5+b^5+b^5}{5}=\frac{3a^5+2b^5}{5}\\b.b.b.a.a\le\frac{b^5+b^5+b^5+a^5+a^5}{5}=\frac{3b^5+2a^5}{5}\end{cases}}\)

\(\Rightarrow\frac{5\left(a^5+b^5\right)}{5}\ge a^2b^2\left(a+b\right)\)hay \(a^5+b^5\ge a^2b^2\left(a+b\right)\)

\(\Rightarrow\frac{1}{\sqrt{a^5+b^5}}\le\frac{1}{ab\sqrt{a+b}}\)(1) .

Tương tự, ta có: \(\frac{1}{\sqrt{b^5+c^5}}\le\frac{1}{bc\sqrt{b+c}}\)(2); \(\frac{1}{\sqrt{c^5+a^5}}\le\frac{1}{ca\sqrt{c+a}}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(VT=\Sigma_{cyc}\frac{1}{\sqrt{a^5+b^5}}\le\Sigma_{cyc}\frac{1}{ab\sqrt{a+b}}\)()

Xét \(\left(\Sigma_{cyc}\frac{1}{ab\sqrt{a+b}}\right)^2\le\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\left(\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}\right)\)\(=\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}\Rightarrow\Sigma_{cyc}\frac{1}{ab\sqrt{a+b}}\le\sqrt{\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}}\)(2)

Từ (1) và (2) suy ra \(\Sigma_{cyc}\frac{1}{\sqrt{a^5+b^5}}\le\sqrt{\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}}\)(đpcm)

Đẳng thức xảy ra khi \(a=b=c=\sqrt{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Không Tên
Xem chi tiết
Trần Phúc Khang
1 tháng 3 2020 lúc 15:25

Áp dụng cosi ta có \(a.a.a.b.b\le\frac{3a^5+2b^5}{5};b.b.b.a.a\le\frac{3b^5+2a^5}{5}\)

=> \(a^5+b^5\ge a^2b^2\left(a+b\right)\)

Khi đó

\(VT\le\frac{1}{ab\sqrt{a+b}}+\frac{1}{bc\sqrt{b+c}}+\frac{1}{ac\sqrt{a+c}}\)

Áp dụng BĐT buniacoxki  ta có :

\((\frac{1}{ab\sqrt{a+b}}+\frac{1}{bc\sqrt{b+c}}+\frac{1}{ac\sqrt{a+c}})^2\le\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\left(\frac{1}{b^2\left(a+b\right)}+\frac{1}{c^2\left(b+c\right)}+...\right)\)

Mà 1/a^2+1/b^2+1/c^2=1(giả thiết)

=> \(VT\le VP\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=can(3)

Bình luận (0)
 Khách vãng lai đã xóa
khoa le nho
2 tháng 3 2020 lúc 10:18

hay quá 

Bình luận (0)
 Khách vãng lai đã xóa
Không Tên
2 tháng 3 2020 lúc 10:39

Trần Phúc Khang Đúng ngay ý tưởng chế đề:3

Bình luận (0)
 Khách vãng lai đã xóa
Không Tên
Xem chi tiết
Trần Thanh Phương
Xem chi tiết
Trần Thanh Phương
27 tháng 7 2019 lúc 10:51

Haiz giải ra rồi

Ta có : \(VT=\Sigma\left(\frac{a^2-bc}{2ka^2+k^2b^2+c^2}\right)\ge0\)

\(\Leftrightarrow\Sigma\left(\frac{2k\left(a^2-bc\right)}{2ka^2+k^2b^2+c^2}\right)\ge0\)

\(\Leftrightarrow\Sigma\left(\frac{2ka^2-2kbc}{2ka^2+k^2b^2+c^2}\right)\ge0\)

\(\Leftrightarrow\Sigma\left(\frac{2ka^2+k^2b^2+c^2+2ka^2-2kbc-2ka^2-k^2b^2-c^2}{2ka^2+k^2b^2+c^2}\right)\ge0\)

\(\Leftrightarrow\Sigma\left(1-\frac{2kbc-2ka^2+2ka^2+k^2b^2+c^2}{2ka^2+k^2b^2+c^2}\right)\ge0\)

\(\Leftrightarrow\Sigma\left(1-\frac{k^2b^2+2kbc+c^2}{\left(k^2b^2+ka^2\right)+\left(ka^2+c^2\right)}\right)\ge0\)

\(\Leftrightarrow\Sigma\left(1-\frac{\left(kb+c\right)^2}{\left(k^2b^2+ka^2\right)+\left(ka^2+c^2\right)}\right)\ge0\)

Áp dụng bất đẳng thức Cauchy-Schwarz :

\(VT=\Sigma\left(1-\frac{\left(kb+c\right)^2}{\left(k^2b^2+ka^2\right)+\left(ka^2+c^2\right)}\right)\ge\Sigma\left[1-\left(\frac{k^2b^2}{k^2b^2+ka^2}+\frac{c^2}{ka^2+c^2}\right)\right]\)

\(=3-\left(\frac{k^2b^2+ka^2}{k^2b^2+ka^2}+\frac{ka^2+c^2}{ka^2+c^2}+\frac{k^2b^2+c^2}{k^2b^2+c^2}\right)=3-3=0\)( đpcm )

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=b=c\\k>0\end{matrix}\right.\)

Bình luận (8)
Nguyễn Quang Định
27 tháng 7 2019 lúc 15:20

Ta có: \(1-\frac{2k\left(a^2-bc\right)}{2ka^2+k^2b^2+c^2}=\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}\)

Ta có thể viết lại bất đẳng thức thành

\(\sum\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}\le3\)

Sử dụng BĐT Cauchy-Schwarz, ta có:

\(\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}=\frac{\left(kb+c\right)^2}{k\left(a^2+kb^2\right)+c^2+ka^2}\le\frac{kb^2}{a^2+kb^2}+\frac{c^2}{c^2+kc^2}\)

Tương tự rồi cộng lại, ta có điều phải chứng minh. Đẳng thức xảy ra khi \(a=b=c\), hoặc \(a=\frac{b}{k}=\frac{c}{k^2}\), hoặc \(b=\frac{c}{k}=\frac{a}{k^2}\), hoặc \(c=\frac{a}{k}=\frac{b}{k^{^2}}\)

Hoặc ta có thể làm như sau.

\(\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}=\frac{kb^2}{a^2+kb^2}+\frac{c^2}{c^2+kc^2}-\frac{k\left(a^2-bc\right)^2\left(kb-c\right)^2}{\left(a^2+kb^2\right)\left(c^2+kc^2\right)\left(2ka^2+k^2b^2+c^2\right)}\)

Ta có đẳng thức sau:

\(\sum\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}=3-p\sum\frac{\left(a^2-bc\right)^2\left(kb-c\right)^2}{\left(a^2+kb^2\right)\left(c^2+ka^2\right)\left(2ka^2+k^2b^2+c^2\right)}\)

\(\sum\frac{a^2-bc}{2ka^2+k^2b^2+c^2}=\frac{1}{2}\sum\frac{\left(a^2-bc\right)^2\left(kb-c\right)^2}{\left(a^2+kb^2\right)\left(c^2+ka^2\right)\left(2ka^2+k^2b^2+c^2\right)}\)

Do đó, bất đẳng thức ban đầu tương đương với

\(\sum\frac{\left(b^2+kc^2\right)\left(a^2-bc\right)^2\left(kb-c\right)^2}{2ka^2+k^2b^2+c^2}\ge0\)

Bình luận (14)
Trần Thanh Phương
26 tháng 7 2019 lúc 15:30

tth Akai Haruma Ace Legona Nguyễn Việt Lâm

Bình luận (19)
zZz Cool Kid_new zZz
Xem chi tiết
tth_new
11 tháng 8 2019 lúc 18:16

Có: \(\frac{a}{b+c+d}+\frac{b+c+d}{a}=\frac{a}{b+c+d}+\frac{b+c+d}{9a}+\frac{8\left(b+c+d\right)}{9a}\)

\(\ge2\sqrt{\frac{a}{b+c+d}.\frac{b+c+d}{9a}}+\frac{8\left(b+c+d\right)}{9a}\)

\(=\frac{2}{3}+\frac{8\left(b+c+d\right)}{9a}\)

Tương tự ba BĐT còn lại và cộng theo vế thu được:

\(\Sigma_{cyc}\left(\frac{a}{b+c+d}+\frac{b+c+d}{a}\right)=\frac{8}{3}+\frac{8}{9}\left(\frac{b+c+d}{a}+\frac{c+d+a}{b}+\frac{d+a+c}{c}+\frac{a+b+c}{d}\right)\)

\(\ge\frac{8}{3}+\frac{32}{9}\sqrt[4]{\frac{\left(b+c+d\right)\left(c+d+a\right)\left(d+a+c\right)\left(a+b+c\right)}{abcd}}\)

\(\ge\frac{8}{3}+\frac{32}{9}\sqrt[4]{\frac{3^4.abcd}{abcd}}=\frac{40}{3}\)

Đẳng thức xảy ra khi a = b =c = d

P/s: Tính sai chỗ nào tự sửa nhá, dạo này hay nhầm lắm!

Bình luận (0)
tthnew
Xem chi tiết
tth_new
Xem chi tiết
Trí Tiên亗
9 tháng 2 2020 lúc 14:58

Bài này tao kiên trì trong nháp lắm rồi, nhưng trên này tao không kiên trì nữa đâu :))

Tóm lại bài này của mày quy đồng cả hai vế lên Kết hợp với điều giả sử \(a\ge b\ge c\)

Nên có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
9 tháng 2 2020 lúc 15:11

Nguyễn Văn Đạt không cần giả sử nha

Bình luận (0)
 Khách vãng lai đã xóa
Trí Tiên亗
9 tháng 2 2020 lúc 15:13

tth_new Thế nào cũng đc nhưng tao kiệt sức vì bài mày rồi :))

Còn bài kia thì ta xin chịu ....

Bình luận (0)
 Khách vãng lai đã xóa