Phân tích đa thức
A=(a+b+c)3+(a-b-c)3+(b-c-a)3+(c-a-b)3
Bài 5 : Phân tích đa thức sau thành nhân tử
A = ( a + b + c )3 - ( a + b - c )3 - ( b + c - a )3 - ( c + a - b )3
Đặt \(\left\{{}\begin{matrix}a+b-c=x\\b+c-a=y\\c+a-b=z\end{matrix}\right.\Leftrightarrow x+y+z=a+b+c\)
Do đó \(A=\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(\Leftrightarrow A=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)-x^3-y^3-z^3\\ \Leftrightarrow A=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(\Leftrightarrow A=3\left(a+b-c+b+c-a\right)\left(b+c-a+c+a-b\right)\left(c+a-b+a+b-c\right)\\ \Leftrightarrow A=3\cdot2b\cdot2c\cdot2a=24abc\)
Phân tích đa thức thành nhân tử
( a + b+ c)^3 - a^3 + b^3 + c^3 = 3(a + b) (b + c) (c + a)
Ta có:
(Đpcm)
Thật ra mình làm theo đề thấy nó đáng ra phải là chứng minh chứ ko phải phân tích . chúc học tốt!
Phân tích đa thức thành nhân tử : (b^3-c^3)a + b(c^3-a^3) + c(a^3-b^3)
phân tích đa thức thành nhân tử a(b^3-c^3)+b(c^3-a^3)+c(a^3-b^3)
\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
\(=ab^3-ac^3+bc^3-a^3b+a^3c-b^3c\)
\(=\left(ab^3-a^3b\right)+\left(bc^3-ac^3\right)+\left(a^3c-b^3c\right)\)
\(=ab\left(b^2-a^2\right)-c^3\left(a-b\right)+c\left(a^3-b^3\right)\)
\(=-ab\left(a-b\right)\left(a+b\right)-c^3\left(a-b\right)+c\left(a-b\right)\left(a^2-ab+b^2\right)\)
\(=\left(a-b\right)\left(-a^2b-ab^2-c^3+a^2c-abc+b^2c\right)\)
Phân tích đa thức thành nhân tử
M=(a+b+c)^3-a^3-b^3-c^3
N=a^3+b^3+c^3-3abc
M = (a + b + c)3 - a3 - b3 - c3
= (a + b)3 + c3 + 3(a + b)2c + 3(a + b)c2 - a3 - b3 - c3
= a3 + b3 + c3 + 3a2b + 3ab2 + 3(a + b)c(a + b + c) - a3 - b3 - c3
= 3ab (a + b) + 3c(a + b)(a + b + c)
= 3(a + b)[ab + c(a + b + c)]
= 3(a + b)(ab + bc + ac + c2)
= 3(a + b)[b(a + c) + c(a + c)]
= 3(a + b)(b + c)(c + a)
N = a3 + b3 + c3 - 3abc
= (a + b)3 + c3 - 3ab(a + b) - 3abc
= (a + b + c)3 - 3(a + b)c(a + b + c) - 3ab(a + b + c)
= (a + b + c)[(a + b + c)2 - 3(a + b)c - 3ab]
= (a + b + c)(a2 + b2 + c2 + 2ab + 2bc + 2ca - 2ac - 3bc - 3ab)
= (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
Phân tích đa thức thành nhân tử
a(b - c)^2 + b(c -a)^2 + c(a - b)^2 - a^3 - b^3 – c^3 + 4abc
phân tích đa thức thafnh nhân tử
(a+b+c)^3 -(a-b-c)^3-(-c-a)^3-(c+a-b)^3
abc-(ab+bc+ca)+(a+b+c)-1
2: =abc-bc-ab-ac+a+b+c-1
=bc(a-1)-ab+b-ac+c+a-1
=bc(a-1)-b(a-1)-c(a-1)+(a-1)
=(a-1)(bc-b-c+1)
=(a-1)(b-1)(c-1)
phân tích đa thức thành nhân tử :a^3(b-c)+b^3(c-a)+c^3(a-b)
a^3(b-c)+b^3(c-a)+c^3(a-b) phân tích đa thức thành nhân tử