Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Linh
Xem chi tiết
Phương Uyên
Xem chi tiết
Nguyễn Ngọc Huy Toàn
22 tháng 3 2022 lúc 13:10

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

Xuan Xuannajimex
Xem chi tiết
Akai Haruma
11 tháng 6 2021 lúc 1:42

Lời giải:
a) Để 2 pt cùng có nghiệm thì:

\(\left\{\begin{matrix} \Delta'_1=16-4m\geq 0\\ \Delta_2=1+16m\geq 0\end{matrix}\right.\Leftrightarrow 4\geq m\geq \frac{-1}{16}\)

b) 

Gọi $2a,a$ lần lượt là nghiệm của PT $(1)$ và PT $(2)$:

Ta có:

\(\left\{\begin{matrix} (2a)^2-8.2a+4m=0\\ a^2+a-4m=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2-4a+m=0\\ a^2+a-4m=0\end{matrix}\right.\)

\(\Rightarrow 5a=5m\Leftrightarrow a=m\)

Thay vô: $m^2+m-4m=0\Leftrightarrow m^2-3m=0$

$\Leftrightarrow m=0$ hoặc $m=3$

Phát đạt 7a9
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 3 2023 lúc 8:08

y=f(x)=x^3+(m+1)x^2+(m-12)x-12m=0

y'=F1(x)=3x^2+2(m+1)x+m-12

Để f(x)=0 có 3 nghiệm phân biệt thì F1(x)=0 có hai nghiệm phan biệt

=>(2m+2)^2-4*3*(m-12)>0

=>4m^2+8m+4-12m+144>0

=>4m^2-4m+148>0

=>m^2-m+37>0

=>(m-1/2)^2+36,75>0(luôn đúng)

你混過 vulnerable 他 難...
Xem chi tiết
Hồng Phúc
5 tháng 1 2021 lúc 17:22

1.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m< \dfrac{25}{12}\)

Hồng Phúc
5 tháng 1 2021 lúc 17:33

3.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)

\(\Leftrightarrow2< m< 11\)

Kunzy Nguyễn
Xem chi tiết
Nguyễn Tuấn
21 tháng 4 2016 lúc 21:09

CHÀO BẠN

Áp dụng Viét

x1*x2=4m (1)x1+x2=2(m+1) (2)

(*)       (x1+m)(x2+m)=3m^2+12

<=>x1*x2+m(x1+x2)=3m^2+12  (**)

thay (1);(2) vô (**) =>....

Mình bày hướng có chỗ nào sai tự sửa

trân lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 2 2022 lúc 20:46

Bài 2: 

Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0

hay -2<m<2

Huỳnh Phúc Khoa
Xem chi tiết
Nguyễn Linh
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 12 2020 lúc 22:11

ĐKXĐ: \(x\ge0\)

\(\left(x^2-x-m\right)\sqrt{x}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)

Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm

Do đó:

a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm 

\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)

b. Để pt có 2 nghiệm pb 

TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0

\(\Leftrightarrow m=0\)

TH2: (1) có 2 nghiệm trái dấu

\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)

\(\Rightarrow m\ge0\)

c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)

đấng ys
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 12 2021 lúc 20:30

\(\left\{{}\begin{matrix}9-8m>0\\9-5m>0\end{matrix}\right.\) \(\Rightarrow m< \dfrac{9}{8}\)

Gọi a là nghiệm chung của 2 pt

\(\Rightarrow\left\{{}\begin{matrix}a^2+3a+2m=0\\a^2+6a+5m=0\end{matrix}\right.\)

\(\Rightarrow3a+3m=0\Rightarrow a=-m\)

Thay vào 2 pt ban đầu:

\(\Rightarrow\left\{{}\begin{matrix}m^2-3m+2m=0\\m^2-6m+5m=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)