Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Gia Bảo Hà Đình
Xem chi tiết
Phạm Nguyễn Hà Chi
27 tháng 7 2021 lúc 7:39

\(\sqrt{10-2\sqrt{21}}+\sqrt{10+2\sqrt{21}}\)

\(=\sqrt{7-2\sqrt{21}+3}+\sqrt{7+2\sqrt{21}+3}\)

\(=\sqrt{\left(\sqrt{7}\right)^2-2.\sqrt{7}.\sqrt{3}+\left(\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{7}\right)^2+2.\sqrt{7}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}\)

\(=\left|\sqrt{7}-\sqrt{3}\right|+\left|\sqrt{7}+\sqrt{3}\right|\)

\(=\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}\)

\(=\sqrt{7}+\sqrt{7}=2\sqrt{7}\)

Nguyễn Lê Phước Thịnh
26 tháng 7 2021 lúc 21:29

Ta có: \(\sqrt{10-2\sqrt{21}}+\sqrt{10+2\sqrt{21}}\)

\(=\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}\)

\(=2\sqrt{7}\)

missing you =
26 tháng 7 2021 lúc 21:44

đặt \(A=\sqrt{10-2\sqrt{21}}+\sqrt{10+2\sqrt{21}}\)

\(=>A^2=10-2\sqrt{21}+10+2\sqrt{21}+2\sqrt{\left(10-2\sqrt{21}\right)\left(10+2\sqrt{21}\right)}\)

\(=>A^2=20+2\sqrt{10^2-\left(2\sqrt{21}\right)^2}=20+2\sqrt{16}=20+2.4=28\)

\(=>A=\sqrt{28}=2\sqrt{7}\)

Bao Gia
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 7 2021 lúc 20:58

\(=\sqrt{7-2\sqrt{21}+3}+\sqrt{7+2\sqrt{21}+3}\)

\(=\sqrt{\sqrt{7}^2-2\sqrt{7}.\sqrt{3}+\sqrt{3}^2}+\sqrt{\sqrt{7}^2+2\sqrt{7}.\sqrt{3}+\sqrt{3}^2}\)

\(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}\)

\(=\left|\sqrt{7}-\sqrt{3}\right|+\left|\sqrt{7}+\sqrt{3}\right|\)

\(=\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}\)

\(=2\sqrt{7}\)

Nguyễn Lê Phước Thịnh
26 tháng 7 2021 lúc 20:59

\(\sqrt{10-2\sqrt{21}}+\sqrt{10+2\sqrt{21}}\)

\(=\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}\)

\(=2\sqrt{7}\)

😈tử thần😈
26 tháng 7 2021 lúc 21:02

\(\sqrt{10-2\sqrt{7}}+\sqrt{10+2\sqrt{21}}\)

\(=\sqrt{3-2\sqrt{7}+7}+\sqrt{3+2\sqrt{21}+7}\) 

\(=\sqrt{\sqrt{3}^2-2\sqrt{3}.\sqrt{7}+\sqrt{7}^2}+\sqrt{\sqrt{3}^2+2\sqrt{3}.\sqrt{7}+\sqrt{7}^2}\)

\(=\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{7}\right)^2}\)

\(=\left|\sqrt{3}-\sqrt{7}\right|+\left|\sqrt{3}+\sqrt{7}\right|\)

\(=\sqrt{7}-\sqrt{3}+\sqrt{3}+\sqrt{7}=2\sqrt{7}\)

Charlet
Xem chi tiết
Tiến Dũng Trương
11 tháng 8 2017 lúc 8:45

ai nay dung kinh nghiem la chinh

cau a)

ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)

\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)

khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)

\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)

\(x=\frac{3-1}{1}=2\)

suy ra 

x^3-4x+1=1

A=1^2018

A=1

b)

ta thay

\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)

khi do 

\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)

\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)

x=2

thay vao

x^3+3x-14=0

B=0^2018

B=0

Nguyễn Anh Vũ
Xem chi tiết
Nguyễn Duy Khang
Xem chi tiết
HT.Phong (9A5)
5 tháng 9 2023 lúc 9:48

a) \(\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)

\(=\sqrt{14}\cdot\sqrt{5-\sqrt{21}}+\sqrt{6}\cdot\sqrt{5-\sqrt{21}}\)

\(=\sqrt{14\cdot\left(5-\sqrt{21}\right)}+\sqrt{6\cdot\left(5-\sqrt{21}\right)}\)

\(=\sqrt{70-14\sqrt{21}}+\sqrt{30-6\sqrt{21}}\)

\(=\sqrt{7^2-2\cdot7\cdot\sqrt{21}+\left(\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}\right)^2-2\cdot3\cdot\sqrt{21}+3^2}\)

\(=\sqrt{\left(7-\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}-3\right)^2}\)

\(=\left|7-\sqrt{21}\right|+\left|\sqrt{21}-3\right|\)

\(=7-\sqrt{21}+\sqrt{21}-3\)

\(=4\)

b) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\left[4\cdot\left(\sqrt{10}-\sqrt{6}\right)+\sqrt{15}\cdot\left(\sqrt{10}-\sqrt{6}\right)\right]\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(\sqrt{10}+\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)

\(=\sqrt{10\cdot\left(4-\sqrt{15}\right)}+\sqrt{6\cdot\left(4-\sqrt{15}\right)}\)

\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)

\(=\sqrt{5^2-2\cdot5\cdot\sqrt{15}+\left(\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}\right)^2-2\cdot3\cdot\sqrt{15}+3^2}\)

\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)

\(=\left|5-\sqrt{15}\right|+\left|\sqrt{15}-3\right|\)

\(=5-\sqrt{15}+\sqrt{15}-3\)

\(=2\)

Lê Văn Hoàng
Xem chi tiết
Kayoko
Xem chi tiết
missing you =
1 tháng 7 2021 lúc 14:49

a, đặt \(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)\)

\(=\sqrt{2-\sqrt{3}}.\sqrt{2}.\left(\sqrt{3}+1\right)\)

\(=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)

\(b,\)

\(\left(\sqrt{21}+7\right)\sqrt{10-2\sqrt{21}}=\left[\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\right].\sqrt{10-2\sqrt{21}}\)

\(=\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\sqrt{\left(\sqrt{7}\right)^2-2\sqrt{7.3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)

\(=\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

\(=\sqrt{7}\left(7-3\right)=4\sqrt{7}\)

 

Nguyễn Lê Phước Thịnh
1 tháng 7 2021 lúc 14:35

a) Ta có: \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}+\sqrt{2}\right)\)

\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)

=3-1=2

b) Ta có: \(\left(\sqrt{21}+7\right)\cdot\sqrt{10-2\sqrt{21}}\)

\(=\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

\(=4\sqrt{7}\)

Nguyễn Thảo Nguyên
Xem chi tiết
Vân Bùi
Xem chi tiết