Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức Minh Nhật
Xem chi tiết
192837465
6 tháng 10 2021 lúc 21:37

4+8+16+32=60chia hết cho 3

Khách vãng lai đã xóa
Nguyễn Trần Bảo An
Xem chi tiết
Nguyễn Đức Trí
4 tháng 8 2023 lúc 12:44

a) \(4^{13}+4^{14}+4^{15}+4^{16}=4^{13}\left(1+4\right)+4^{14}\left(1+4\right)=4^{13}.5+4^{14}.5=5\left(4^{13}+4^{14}\right)⋮5\Rightarrow dpcm\)

c) \(2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}\)

\(=2^{10}\left(1+2+2^2\right)+2^{13}\left(1+2+2^2\right)\)

\(=2^{10}.7+2^{13}.7=7\left(2^{10}+2^{13}\right)⋮7\Rightarrow dpcm\)

Câu c bạn xem lại đê

M.Anh_12
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2023 lúc 19:03

Sửa đề: \(A=2^0+2^1+2^2+...+2^{99}\)

\(=\left(2^0+2^1\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)

\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{98}\left(1+2\right)\)

\(=3\left(1+2^2+...+2^{98}\right)⋮3\)

nguyenlengan
Xem chi tiết
Lê Hoài Duyên
9 tháng 9 2017 lúc 23:49

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

Nguyễn Hải Nam
10 tháng 12 2017 lúc 21:36

Thanks bạn

Đặng Thị Khánh Ly
13 tháng 2 2020 lúc 23:03

Giải: 

A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010

A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_

A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3

A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3

A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)

A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7

A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.

Các câu còn lại làm tương tự như câu a nha bạn!

Khách vãng lai đã xóa
ßųồท
Xem chi tiết
Lê Minh Hiền
Xem chi tiết
Đoàn Đức Hà
16 tháng 12 2020 lúc 11:43

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

Khách vãng lai đã xóa
huỳnh anh vũ
Xem chi tiết
soyeon_Tiểu bàng giải
10 tháng 8 2016 lúc 20:52

A = 2 + 22 + 23 + 2+ ... + 29 + 210 (có 10 số; 10 chia hết cho 2)

A = (2 + 22) + (23 + 24) + ... + (29 + 210)

A = 2.(1 + 2) + 23.(1 + 2) + ... + 29.(1 + 2)

A = 2.3 + 23.3 + ... + 29.3

A = 3.(2 + 23 + ... + 29) chia hết cho 3

Anh Trần
10 tháng 8 2016 lúc 20:52

suy ra 2A=2^2 + 2^3 +2^4 +... +2^10+2^11

=>2A-A=2^2 +2^3+...+2^11-2-2^2-2^3-...-2^10=2^11-2=2046

TRẦN THỊ BÍCH NGỌC
19 tháng 8 2016 lúc 20:02

\(A=2+2^2+2^3+...+2^9+2^{10}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^9+2^{10}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

\(=2.3+2^3.3+...+2^9.3\)

\(=3\left(2+2^2+2^3+...+2^{10}\right)\)

\(\Rightarrow\)\(A\)chia hết cho \(3\)

Ichigo Hoshimiya
Xem chi tiết
vynguyen_k20b
7 tháng 10 2020 lúc 22:22

Các bài này có lời giải rồi mà 

Khách vãng lai đã xóa
Chippii
Xem chi tiết
Hồ Thị Quỳnh Tiên
9 tháng 8 2017 lúc 17:38

S=1+7+7^2+7^3+...+7^100+7^101

   =(1+7)+7^2(1+7)+...+7^100(1+7)

   =8+7^2.8+...+7^100.8

   =8.(1+7^2+...+7^100) chia hết cho 8 

Vậy S chia hết cho 8

     

Nguyễn Thị Hải
9 tháng 8 2017 lúc 19:24

a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5

   S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)

   S=20+4^2*20+...+4^98

   S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)

 b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6

    S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

    S=6+2^2.*6+...+2^2008

    S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6

  

    

tìm toi
16 tháng 8 2020 lúc 13:45

a)Cm A=10mũ99 cộng 104 chia hết cho hai và ba 

b)Cm B=10 mũ 100 cộng 17 chia hết cho 9

c)Cm 10 mũ 11 cộng với 8 chia hết cho 18 với n thuộc z và n bé hơn hoặc bằng 2

mong mọi người trả lời giúp mik cảm ơn các bạn

Khách vãng lai đã xóa