Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Mát
Xem chi tiết
Kudo Shinichi
15 tháng 9 2019 lúc 18:21

Ta có : \(ĐKXĐ:x\ne-\frac{1}{2}\)

\(A=\left(x+1\right)+\frac{2}{2x+1}\) vì \(x\in Z\) nên A nguyên thì \(\frac{2}{2x+1}\) nguyên 

Hay \(2x+1\) là ước của 2 . Nên :
\(2x+1=2\Rightarrow x=\frac{1}{2}\) ( loại )

\(2x+1=1\Rightarrow x=0\) ( t/m)

\(2x+1=-1\Rightarrow x=-1\) ( t/m)

\(2x+1=-2\Rightarrow x=-\frac{3}{2}\) ( loại )

Với \(x=0;x=-1\) thì A nhận giá trị nguyên 

Chúc bạn học tốt !!!

[MINT HANOUE]
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 12 2021 lúc 22:30

a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)

\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)

\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2x}{x-2}\)

Nguyễn Việt Hà
Xem chi tiết
Yến Nhi Ngọc Hoàng
Xem chi tiết
Lam anh Nguyễn hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 8 2023 lúc 13:04

loading...

Lê Thị Thảo Vân
Xem chi tiết
Trần Thanh Phương
13 tháng 2 2019 lúc 18:32

Để \(A=\frac{2x^2+3x+3}{2x+1}\)nguyên thì :

\(\left(2x^2+3x+3\right)⋮\left(2x+1\right)\)

\(\left(2x^2+x+2x+1+2\right)⋮\left(2x+1\right)\)

\(\left[x\left(2x+1\right)+\left(2x+1\right)+2\right]⋮\left(2x+1\right)\)

\(\left[\left(2x+1\right)\left(x+1\right)+2\right]⋮\left(2x+1\right)\)

Vì \(\left(2x+1\right)\left(x+1\right)⋮\left(2x+1\right)\)

\(\Rightarrow2⋮\left(2x+1\right)\)

\(\Rightarrow2x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\Rightarrow x\in\left\{0;-1;0,5;-1,5\right\}\)

Vậy....

Tuyết Ly
Xem chi tiết
Sorcerer_of_Dark_Magic
Xem chi tiết
Nguyen Thuy Trinh
2 tháng 8 2017 lúc 16:33

Để P nguyên => 2x^2 + 3x+3 chia hết cho 2x-1

   2x^2+3x+3 = x(2x-1)+4x+3. Vì x(2x-1)chia hết cho 2x-1 => 4x+3 chia hết cho 2x-1

=> 2(2x-1)+5. Do 2(2x-1) chia hết cho 2x-1 nên 5 chia hết cho 2x-1=> 2x-1 thuộc Ư(5)={+-1;+-5}.ta có bảng sau:

2x-11-15-5
x103-2

Vậy x thuộc{1;0;3;-2}  thì P nguyên
 

See you again
Xem chi tiết
tth_new
7 tháng 4 2019 lúc 19:24

\(P=\frac{2x^2-x+4x+3}{2x-1}=\frac{x\left(2x-1\right)+2\left(2x-1\right)+5}{2x-1}\)

\(=x+2+\frac{5}{2x-1}\).Do x nguyên nên x + 2 nguyên.

Để P nguyên thì 2x - 1 thuộc Ư(5).

Đến đây dễ rồi nhé.

Fudo
19 tháng 6 2019 lúc 10:24

                                                                       Bài giải

                  Ta có : \(P=\frac{2x^2+3x+3}{2x-1}=\frac{x\left(2x-1\right)+x+3x+3}{2x-1}=\frac{x\left(2x-1\right)+4x+3}{2x-1}\)

\(=\frac{x\left(2x-1\right)+2\left(2x-1\right)+2+3}{2x-1}=\frac{\left(x+2\right)\left(2x-1\right)+5}{2x-1}=x+2+\frac{5}{2x-1}\)

Để \(P=\frac{2x^2+3x+3}{2x-1}\)nguyên  \(\Rightarrow\text{ }\frac{5}{2x-1}\) nguyên \(\Rightarrow\text{ }5\text{ }⋮\text{ }2x-1\)

                                                                                                 \(\Leftrightarrow\text{ }2x-1\inƯ\left(5\right)=\left\{\pm1\text{ ; }\pm5\right\}\)

Ta có bảng :                                  ( Vi không có dấu hoặc 4 cái nên mình lập bảng )

\(2x-1\) \(-1\) \(1\)\(-5\) \(5\)
\(x\) \(0\) \(1\) \(-2\) \(3\)

                  Vậy \(P\) có giá trị nguyên khi \(x\in\left\{0\text{ ; }1\text{ ; }-2\text{ ; }3\right\}\)