Cho \(a+b=ab\). Tính giá trị biểu thức: \(A=(a^3+b^3-a^3b^3)+27a^6b^6\).
~giúp tớ với~
Cho \(a+b=ab\). Tính giá trị biểu thức: \(A=(a^3+b^3-a^3b^3)+27a^6b^6\).
Rút gọn và tính giá trị biểu thức :
\(N=\) \(\left(a-3b\right)^2-\left(a+3b\right)^2-\left(a-1\right)\left(b-2\right)\)\(với\)\(a=\dfrac{1}{2};b=-3\)
\(N=\left(a-3b\right)^2-\left(a+3b\right)^2-\left(a-1\right)\left(b-2\right)=\left(a-3b-a-3b\right)\left(a-3b+a+3b\right)-\left(ab-2a-b+2\right)=\left(-6b\right).2a-ab+2a+b-2=2a+b-13ab-2\)
Thay \(a=\dfrac{1}{2};b=-3\) vào N ta được: \(N=2a+b-13ab-2=2.\dfrac{1}{2}-3-13.\dfrac{1}{2}.\left(-3\right)-2=\dfrac{31}{2}\)
Ta có: \(N=\left(a-3b\right)^2-\left(a+3b\right)^2-\left(a-1\right)\left(b-2\right)\)
\(=a^2-6ab+9b^2-a^2-6ab-9b^2-ab+2a+b-2\)
\(=-13ab+2a+b-2\)
\(=-13\cdot\dfrac{1}{2}\cdot\left(-3\right)-1-3-2\)
\(=\dfrac{27}{2}\)
\(N=\left(a-3b\right)^2-\left(a+3b\right)^2-\left(a-1\right)\left(b-2\right)\)
\(=a^2-6ab+9b^2-a^2-6ab-9b^2-ab+2a+b-2\)
\(=-13ab+2a+b-2\)
Thay \(a=\dfrac{1}{2};b=-3\) vào bt N được
\(N=\left(-13\right)\cdot\dfrac{1}{2}\cdot\left(-3\right)+2\cdot\dfrac{1}{2}+\left(-3\right)-2\)
\(=\dfrac{31}{2}\)
Vậy: Giá trị của N tại \(a=\dfrac{1}{2};b=-3\) là \(\dfrac{31}{2}\)
a)Cho a + b + c = 9, a2 + b2 + c2 = 141. Tính giá trị của biểu thức M =ab + bc + ca
b) Cho x + y = 1 . Tính giá trị của biểu thức B = x3 + 3xy + y3
c) Cho x + y = a ; x2 + b2 = b ; x3 + y3 = c .Tính giá trị của biểu thức N =a3 - 3ab + 2c
d) Cho x + y = a ; x - y = b. Tính giá trị của biểu thức D = x3 - y3 theo a và b
a)Cho a + b + c = 9, a2 + b2 + c2 = 141. Tính giá trị của biểu thức M =ab + bc + ca
b) Cho x + y = 1 . Tính giá trị của biểu thức B = x3 + 3xy + y3
c) Cho x + y = a ; x2 + b2 = b ; x3 + y3 = c .Tính giá trị của biểu thức N =a3 - 3ab + 2c
d) Cho x + y = a ; x - y = b. Tính giá trị của biểu thức D = x3 - y3 theo a và b
a)a+b+c=9
=>(a+b+c)2=81
=>a2+b2+c2+2ab+2bc+2ca=81
Từ a2+b2+c2=141=>2ab+2bc+2ca=81-141=-60
=>2(ab+bc+ca)=-60=>ab+bc+ca=-30
b)x+y=1
=>(x+y)3=1
=>x3+3x2y+3xy2+y3=1
=>x3+y3+3xy(x+y)=1
=>x3+y3+3xy=1(Do x+y=1)
c)a3-3ab+2c=(x+y)3-3(x+y)(x2+y2)+2(x3+y3)
=x3+3x2y+3xy2+y3-3x3-3y3-3x2y-3xy2+2x3+2y3=0
d)đang tìm hướng giải
Tính giá trị của biểu thức A= 3a - 3ab - b với |a|= 1/3 : |b|= 0,25
\(\text{Ta có: |a| = }\frac{1}{3}\Leftrightarrow a=\orbr{\begin{cases}\frac{1}{3}\\-\frac{1}{3}\end{cases}}\)
\(\text{Ta có: |b| = }0,25\Leftrightarrow b=\orbr{\begin{cases}0,25\\-0.25\end{cases}}\)
Thay a. b vào ta có:
A =
theo từng TH à Edogawa Conan
\(\left|a\right|=\frac{1}{3}\Leftrightarrow\orbr{\begin{cases}a=\frac{1}{3}\\a=-\frac{1}{3}\end{cases}}\)
\(\left|b\right|=0,25\Leftrightarrow\orbr{\begin{cases}b=0,25\\b=-0,25\end{cases}}\)
\(\Leftrightarrow\)Có tất cả 4 trường hợp
tìm các cặp đó xong rồi thay a,b vào
A=..........(bạn tự tính)
Tính giá trị của biểu thức a x 3 + b x 3 + c x 3, với a + b + c = 2014
Tính giá trị của biểu thức a x 3 + b x 3 + c x 3, với a + b + c = 2014
có 3 thừa số chung
ax3+bx3+cx3=3x(a+b+c)=3x2014=6012
Tính giá trị của biểu thức a x 3 + b x 3 + c x 3, với a + b + c = 2014
Ta có : a x 3 + b x 3 + c x 3 = 3 x ( a + b + c )
Mà : a + b + c = 2014
Thay vào ta có : 3 x ( a + b + c ) = 3 x 2014 = 6042
Vậy giá trị của biểu thức a x 3 + b x 3 + c x 3 là 6042
a x 3 + b x 3 + c x3 = ( a + b+c) x 3
thay a+b+c = 2014 vào biểu thức ta có
(a+b+c) x 3 = 2014 x 3
= 6042
vậy biểu thức là 6042
Ta co : 3a + 3b + 3c = 3.(a + b + c)
<=> 3a + 3b + 3c = 3.2014 = 6042
Cho biểu thức : A=\(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
a, Rút gọn biểu thức A
b, Tính giá trị biểu thức A tại x, biết \(x=-\dfrac{1}{2}\)
c, Tính giá trị của x để A<0
a, ĐKXĐ: x≠±3
A=\(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{3-x}{x+3}.\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{3-x}{x-3}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{9-x^2}{x^2-9}+\dfrac{x^2-3x}{x^2-9}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{-3}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\dfrac{-1}{x^2}\)
b, Thay x=\(-\dfrac{1}{2}\) (TMĐKXĐ) vào A ta có:
\(\dfrac{-1}{\left(-\dfrac{1}{2}\right)^2}\)=-4
c, A<0 ⇔ \(\dfrac{-1}{x^2}< 0\) ⇔ x2>0 (Đúng với mọi x)
Vậy để A<0 thì x đúng với mọi giá trị (trừ ±3)