Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 9 2018 lúc 12:35

Cách 1 : Gọi B = xy – x2y2 + x4y4 – x6y6 + x8y8

Thay x = –1 ; y = –1 vào biểu thức.

B = (–1).(–1) – (–1)2.(–1)2+ (–1)4.(–1)4 – (–1)6.(–1)6 + (–1)8.(–1)8

= + 1 – 1.1 + 1.1 – 1.1+ 1.1

= 1 – 1 + 1 – 1 + 1

= 1

Cách 2: Khi x = -1, y = -1 thì x.y = (-1).(-1) = 1.

Có : B = xy – x2y2 + x4y4 – x6y6 + x8y8 = xy – (xy)2 + (xy)4 – (xy)6 + (xy)8 = 1 - 1 + 1 - 1 + 1 = 1

Phương Trần Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 9 2021 lúc 23:38

Bài 3: 

a: Ta có: C=A+B

\(=x^2-2y+xy+1+x^2+y-x^2y^2-1\)

\(=2x^2-y+xy-x^2y^2\)

b: Ta có: C+A=B

\(\Leftrightarrow C=B-A\)

\(=x^2+y-x^2y^2-1-x^2+2y-xy-1\)

\(=-x^2y^2+3y-xy-2\)

Phương Trần Lê
Xem chi tiết
Lê thị hậu
10 tháng 9 2021 lúc 22:09

a) thay x=4 và y=5 vào biểu thức ta đc :129

b) tương tự....To be continued

 

 

Nguyễn Lê Phước Thịnh
10 tháng 9 2021 lúc 23:17

a:\(A=x^2+2xy-3x^3+2y^3+3x^3-y^3\)

\(=x^2+2xy+y^3\)

\(=5^2+2\cdot5\cdot4+4^3\)

\(=25+40+64=129\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 10 2018 lúc 3:23

Thay x = 1, y = -1 vào A ta có A = -1. Chọn C

Khánh Linh Đỗ
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 10 2023 lúc 16:46

a: \(x^2+4x+4=x^2+2\cdot x\cdot2+2^2=\left(x+2\right)^2\)

b: \(4x^2-4x+1=\left(2x\right)^2-2\cdot2x\cdot1+1^2=\left(2x-1\right)^2\)

c: \(2x-1-x^2\)

\(=-\left(x^2-2x+1\right)=-\left(x-1\right)^2\)

d: \(x^2+x+\dfrac{1}{4}=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)

e: \(9-x^2=3^2-x^2=\left(3-x\right)\left(3+x\right)\)

g: \(\left(x+5\right)^2-4x^2=\left(x+5+2x\right)\left(x+5-2x\right)\)

\(=\left(5-x\right)\left(5+3x\right)\)

h: \(\left(x+1\right)^2-\left(2x-1\right)^2\)

\(=\left(x+1+2x-1\right)\left(x+1-2x+1\right)\)

\(=3x\left(-x+2\right)\)

i: \(=x^2y^2-4xy+4-3\)

\(=\left(xy-2\right)^2-3=\left(xy-2-\sqrt{3}\right)\left(xy-2+\sqrt{3}\right)\)

k: \(=y^2-\left(x-1\right)^2\)

\(=\left(y-x+1\right)\left(y+x-1\right)\)

l: \(=x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3=\left(x+2\right)^3\)

m: \(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2-y^3=\left(2x-y\right)^3\)

Nguyên Bảo
Xem chi tiết
Akai Haruma
7 tháng 10 2023 lúc 19:54

Lời giải:
Với $x=3, y=\frac{1}{3}$ thì $xy=3.\frac{1}{3}=1$
Khi đó:

$A=xy+(xy)^2+(xy)^4+...+(xy)^{2022}=1+1^2+1^4+...+1^{2022}$

$=\underbrace{1+1+....+1}_{1012}=1012.1=1012$
b. Đề thiếu dữ kiện về $x,y$

Trần Duy Sang
Xem chi tiết
Liah Nguyen
28 tháng 10 2021 lúc 16:26

a, 16a2 - 4b3 = 4.(4a2 - b3)

b, 3x3 + 45 = 3.(x3 + 15)

Minh Hiếu
28 tháng 10 2021 lúc 16:28

a) \(16a^2-4b^3\)

\(=4\left(4a^2-b^2\right)\)

b) \(3x^3+45\)

\(=3\left(x^3+15\right)\)

tanqr
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 10 2021 lúc 19:47

\(a,=4\left(x-1\right)^2\\ b,=\left(x-y\right)\left(x+y\right)+3\left(x+y\right)=\left(x+y\right)\left(x-y+3\right)\)

Liah Nguyen
19 tháng 10 2021 lúc 19:48

a, 4x2 - 8x + 4 = (2x)2 - 2.2x.2 + 2 = (2x - 2)2

b, x2 - y2 + 3x + 3y = (x2 - y2) + (3x + 3y) = (x- y). (x + y) + 3.(x + y) = (x+y).(x- y + 3)

Nguyễn Thị Hảo
Xem chi tiết
Phương Thảo Nguyễn
25 tháng 3 2017 lúc 21:23

a) A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.

Trước hết ta thu gọn đa thức

A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3

Thay x = 5; y = 4 ta được:

A = 52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.

Vậy A = 129 tại x = 5 và y = 4.

b) M = xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.

Thay x = -1; y = -1 vào biểu thức ta được:

M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8

= 1 -1 + 1 - 1+ 1 = 1.

tran khoi my
21 tháng 3 2017 lúc 22:06

a, x2 + 2xy - 3x3 + 2y3 + 3x3 - y3

= (-3x3 + 3x3)+(2y3 - y3)+ x2 + 2xy

= -1y3 + x2 + 2xy

thay x = 5 va y = 4 vao da thuc x2 + 2xy - 3x3 + 2y3 + 3x3 - y3

ta co:5.2 + 2.5.4 - 3.5.3 + 2.4.3 + 3.5.3 - 4.3

= 10 + 40 - 45 + 24 + 45 - 12

= 62

huyền thoại đêm trăng
21 tháng 3 2017 lúc 22:10

Đại số lớp 7

Lê Hà Ny
Xem chi tiết
Norad II
28 tháng 10 2021 lúc 13:57

a) \(x^2+2xy+y^2-4=\left(x+y\right)^2-2^2\)

\(=\left(x+y-2\right)\left(x+y+2\right)\)

b) \(x^2-y^2+x+y=\left(x-y\right)\left(x+y\right)+1\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+1\right)\)

c) \(y^2+x^2+2xy-16=x^2+2xy+y^2-16\)

\(=\left(x+y\right)^2-4^2=\left(x+y+4\right)\left(x+y-4\right)\)