Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Minh Hiếu
Xem chi tiết
Nguyễn Hoàng Minh
21 tháng 12 2021 lúc 20:19

\(PT\Leftrightarrow m^2x-m^2-5mx+m+6x+2=0\\ \Leftrightarrow x\left(m^2-5m+6\right)=m^2-m-2\\ \Leftrightarrow x\left(m-2\right)\left(m-3\right)=\left(m-2\right)\left(m+1\right)\)

Với \(m\ne2;m\ne3\)

\(PT\Leftrightarrow x=\dfrac{\left(m-2\right)\left(m+1\right)}{\left(m-2\right)\left(m-3\right)}=\dfrac{m+1}{m-3}\)

Với \(m=2\Leftrightarrow0x=0\left(vsn\right)\)

Với \(m=3\Leftrightarrow0x=4\left(vn\right)\)

Vậy với \(m\ne2;m\ne3\) thì PT có nghiệm duy nhất \(x=\dfrac{m+1}{m-3}\), với \(m=2\) thì PT có vô số nghiệm và với \(m=3\) thì PT vô nghiệm

huynh thi huynh nhu
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 2021 lúc 23:24

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2m\\x-2m=2x+m\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2m\\2m-x=2x+m\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2m\\x=-3m\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2m\\x=\dfrac{m}{3}\end{matrix}\right.\end{matrix}\right.\) 

Vậy:

- Với \(m=0\) pt có nghiệm \(x=0\)

- Với \(m>0\) pt có nghiệm \(x=\dfrac{m}{3}\)

- Với \(m< 0\) pt có nghiệm \(x=-3m\)

hello sun
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 12 2021 lúc 17:38

Với \(m=0\)

\(PT\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)

Với \(m\ne0\)

\(\Delta'=\left(m-1\right)^2-m\left(m-3\right)=m+1\)

PT vô nghiệm \(\Leftrightarrow m+1< 0\Leftrightarrow m< -1\)

PT có nghiệm kép \(\Leftrightarrow m+1=0\Leftrightarrow m=-1\)

\(\Leftrightarrow x=-\dfrac{b'}{a}=\dfrac{m-1}{2m}\)

PT có 2 nghiệm phân biệt \(\Leftrightarrow m+1>0\Leftrightarrow m>-1;m\ne0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{m-1+\sqrt{m+1}}{m}\\x=\dfrac{m-1-\sqrt{m+1}}{m}\end{matrix}\right.\)

Nghịch Dư Thủy
Xem chi tiết
Lê Thu Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 12 2021 lúc 21:10

a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)\ne0\)

hay \(m\notin\left\{3;-2\right\}\)

Để phương trình có vô số nghiệm thì \(m-3=0\)

hay m=3

Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\m^2-4m+3< >0\end{matrix}\right.\Leftrightarrow m=-2\)

JakiNatsumi
Xem chi tiết
Sonyeondan Bangtan
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 9 2021 lúc 21:14

c.

\(\Leftrightarrow cos\left(x+12^0\right)+cos\left(90^0-78^0+x\right)=1\)

\(\Leftrightarrow2cos\left(x+12^0\right)=1\)

\(\Leftrightarrow cos\left(x+12^0\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+12^0=60^0+k360^0\\x+12^0=-60^0+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=48^0+k360^0\\x=-72^0+k360^0\end{matrix}\right.\)

2.

Do \(-1\le sin\left(3x-27^0\right)\le1\) nên pt có nghiệm khi:

\(\left\{{}\begin{matrix}2m^2+m\ge-1\\2m^2+m\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m^2+m+1\ge0\left(luôn-đúng\right)\\2m^2+m-1\le0\end{matrix}\right.\)

\(\Rightarrow-1\le m\le\dfrac{1}{2}\)

Nguyễn Việt Lâm
20 tháng 9 2021 lúc 21:11

a.

\(\Rightarrow\left[{}\begin{matrix}x+15^0=arccos\left(\dfrac{2}{5}\right)+k360^0\\x+15^0=-arccos\left(\dfrac{2}{5}\right)+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-15^0+arccos\left(\dfrac{2}{5}\right)+k360^0\\x=-15^0-arccos\left(\dfrac{2}{5}\right)+k360^0\end{matrix}\right.\)

b.

\(2x-10^0=arccot\left(4\right)+k180^0\)

\(\Rightarrow x=5^0+\dfrac{1}{2}arccot\left(4\right)+k90^0\)

Hồng Phúc
20 tháng 9 2021 lúc 21:15

2.

Phương trình \(sin\left(3x-27^o\right)=2m^2+m\) có nghiệm khi:

\(2m^2+m\in\left[-1;1\right]\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m^2+m\le1\\2m^2+m\ge-1\end{matrix}\right.\)

\(\Leftrightarrow\left(m+1\right)\left(2m-1\right)\le0\)

\(\Leftrightarrow-1\le m\le\dfrac{1}{2}\)

Nguyễn Thái Bình
Xem chi tiết
Huỳnh Thị Minh Nguyệt
25 tháng 2 2016 lúc 9:08

\(x^2-\left(3m-2\right)x+2m\left(m-2\right)<0\) (1)

Tam thức bậc hai ở (1) luôn có hai nghiệm \(x_1=2m\)

và \(x_2=m-2\) với mọi \(m\in R\) Từ đó ta có 

- Khi 2m<m-2 hay m<-2 thì (1) có nghiệm 2m<x<m-2

- Khi 2m=m-2 hay m=-2 thì (1) vô nghiệm 

- Khi 2m>m-2 hay m>-2 thì (1) có nghiệm m-2<x<2m