Cos a+ sina /cos a- sin a biêt tan a= -2
Cho tan a=1/2 . tính \(M=\dfrac{\cos a-sina}{\cos a+\sin a}\)
Thay \(a=\dfrac{1}{2}\) vào M, ta được:
\(M=\dfrac{cos\dfrac{1}{2}-sin\dfrac{1}{2}}{cos\dfrac{1}{2}+sin\dfrac{1}{2}}\approx0,98\)
Bài 1 CM các đẳng thức sau:
a, 1+ sin2a / sina + cosa - 1-tan ²a/2 / 1+ tan ²a/2 = sina
b, cota - tana = 2cot2a
c, 1+ cosa +cos2a + cos3a/ 2cos²a + cosa-1 = 2cosa
d, sin²a / sina- cosa - sina + cosa / tan²a = sina + cosa
e, sin²a - cos²(a-b ) + 2coscosb ×cos(a-b) = cos2a
f, cos²a - 2sina × ( 1-sina ) × cosa +( 1 + sina) × cosa - 2×(1+sina ) / 1- sina = cosa
Bài 2 CM các đẳng thức sau ko phụ thuộc vào x
a, A= sin⁶x + cos⁶x - 1 / sin⁴x + cos ⁴x -1
b, B = ( 2sin ⁶x - 3sin ⁴x - 4sin²x ) +( 2cos⁶x - 3 cos⁴x- 4cos⁴x
c, C= sin⁴x + 3cos⁴x -1 / sin⁶x + cos⁶x + 3cos⁴x-1
Giải giúp tớ 2 bài này vs tớ cảm ơn nhìu
tính giá trị của biểu thức:
B= \(\frac{\sin a+\cos a}{\cos a-sina}\) biết \(\tan a=-2\)
C= \(\sin^2a-\sin a.\cos a+\cos^2a\) biết \(\tan a=\frac{1}{2}\)
F= \(\frac{8\cos^3a-2\sin^3a+\cos a}{2\cos a-\sin^3a}\) biết \(\tan a=2\)
\(sin^2a-sina.cosa+cos^2a\)
\(\Leftrightarrow tan^2a-tana+1\)
Thay tana = 1/2
\(\left(\frac{1}{2}\right)^2-\frac{1}{2}+1=\frac{3}{4}\)
Chứng minh rằng:
Cos^4(a)+sin^4(a)+tan^3(a)=
Sina+cosa/cos^2(a)
Dựa vào các công thức cộng đã học:
sin(a + b) = sina cosb + sinb cosa;
sin(a – b) = sina cosb - sinb cosa;
cos(a + b) = cosa cosb – sina sinb;
cos(a – b) = cosa cosb + sina sinb;
và kết quả cos π/4 = sinπ/4 = √2/2, hãy chứng minh rằng:
a) sinx + cosx = √2 cos(x - π/4);
b) sin x – cosx = √2 sin(x - π/4).
a) √2 cos(x - π/4)
= √2.(cosx.cos π/4 + sinx.sin π/4)
= √2.(√2/2.cosx + √2/2.sinx)
= √2.√2/2.cosx + √2.√2/2.sinx
= cosx + sinx (đpcm)
b) √2.sin(x - π/4)
= √2.(sinx.cos π/4 - sin π/4.cosx )
= √2.(√2/2.sinx - √2/2.cosx )
= √2.√2/2.sinx - √2.√2/2.cosx
= sinx – cosx (đpcm).
Cho 0<a<90.CM các hệ sau
a)\(\frac{sin^2a-cos^2a+cos^4a}{cos^2a-sin^2a+sin^4a}=tan^4a\)
b)\(\frac{1-4sin^2a.cos^2a}{\left(sina+cosa\right)^2}=\left(sina-cosa\right)^2\)
cho tam giác ABC . chứng minh:
a, sin(A+B)=sinC. ; cos (A+B)=cos-C; tan ( A+B)= -tan C
b, \(sin\frac{A+B}{2}=cos\frac{C}{2}\) ; \(cos\frac{A+B}{2}=sin\frac{C}{2}\) ; tan\(\frac{A+B}{2}=cot\frac{C}{2}\)
c, tan A+tanB+tanC= tanA.tanB.tanc( tam giác không vuông)
d, sinA+sinB+sinC= \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)
e, cos A+cosB+cosC= \(1+4sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\)
f, sin2A+sin2B+sin2C= 4sinAsinBsinC
g, cos 2A+cos2B+cos2C=1-2cosAcosBcosC
\(A+B+C=180^0\Rightarrow A+B=180^0-C\)
\(\Rightarrow sin\left(A+B\right)=sin\left(180^0-C\right)=sinC\)
\(cos\left(A+B\right)=cos\left(180^0-C\right)=-cosC\)
\(tan\left(A+B\right)=tan\left(180^0-C\right)=-tanC\)
b/ \(\frac{A+B+C}{2}=90^0\Rightarrow\frac{A+B}{2}=90^0-\frac{C}{2}\)
\(\Rightarrow sin\frac{A+B}{2}=sin\left(90^0-\frac{C}{2}\right)=cos\frac{C}{2}\)
\(cos\frac{A+B}{2}=cos\left(90^0-\frac{C}{2}\right)=sin\frac{C}{2}\)
\(tan\frac{A+B}{2}=tan\left(90-\frac{C}{2}\right)=cot\frac{C}{2}\)
c/ \(A+B=180^0-C\Rightarrow tan\left(A+B\right)=-tanC\)
\(\Leftrightarrow\frac{tanA+tanB}{1-tanA.tanB}=-tanC\)
\(\Leftrightarrow tanA+tanB=-tanC+tanA.tanB.tanC\)
\(\Leftrightarrow tanA+tanB+tanC=tanA.tanB.tanC\)
d/ \(sinA+sinB+sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)
\(=2cos\frac{C}{2}.cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)
\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)\)
\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)\)
\(=4cos\frac{C}{2}.cos\frac{A}{2}.cos\frac{B}{2}\)
e/
\(cosA+cosB+cosC=2cos\frac{A+B}{2}cos\frac{A-B}{2}+1-2sin^2\frac{C}{2}\)
\(=1+2sin\frac{C}{2}.cos\frac{A-B}{2}-2sin^2\frac{C}{2}\)
\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-sin\frac{C}{2}\right)\)
\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-cos\frac{A+B}{2}\right)\)
\(=1+4sin\frac{C}{2}.sin\frac{A}{2}sin\frac{B}{2}\)
f/
\(sin2A+sin2B+sin2C=2sin\left(A+B\right).cos\left(A-B\right)+2sinC.cosC\)
\(=2sinC.cos\left(A-B\right)+2sinC.cosC\)
\(=2sinC\left(cos\left(A-B\right)+cosC\right)\)
\(=2sinC\left[cos\left(A-B\right)-cos\left(A+B\right)\right]\)
\(=4sinC.sinA.sinB\)
g/
\(cos^2A+cos^2B+cos^2C=\frac{1}{2}+\frac{1}{2}cos2A+\frac{1}{2}+\frac{1}{2}cos2B+cos^2C\)
\(=1+\frac{1}{2}\left(cos2A+cos2B\right)+cos^2C\)
\(=1+cos\left(A+B\right).cos\left(A-B\right)+cos^2C\)
\(=1-cosC.cos\left(A-B\right)+cos^2C\)
\(=1-cosC\left(cos\left(A-B\right)-cosC\right)\)
\(=1-cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]\)
\(=1-2cosC.cosA.cosB\)
Bài 1: không dùng bảng số, máy tính bỏ túi hãy tính giá trị của các biểu thức
a, M=sin242 + sin243 + sin244 + sin245 + sin246 + sin247 + sin248
b, cos215 - cos225 + cos235 - cos245 + cos255 - cos265 + cos275
Bài 2: chứng minh rằng
a, (1- cosa)/sina=sina/(1+cosa)
b, tan2a - sin2a = tan2a.sin2a
Bài 3 cho
sinx + cosx = căn2
Chứng minh rằng sinx = cosx. Tìm x
Bài 1: không dùng bảng số, máy tính bỏ túi hãy tính giá trị của các biểu thức
a, M=sin242 + sin243 + sin244 + sin245 + sin246 + sin247 + sin248
b, cos215 - cos225 + cos235 - cos245 + cos255 - cos265 + cos275
Bài 2: chứng minh rằng
a, (1- cosa)/sina=sina/(1+cosa)
b, tan2a - sin2a = tan2a.sin2a
Bài 3 cho
sinx + cosx = căn2
Chứng minh rằng sinx = cosx. Tìm x
bài 1
a) \(M=\sin^242^o+\sin^243^o+\sin^244^o+\sin^245^o+\sin^246^o+\sin^247^o+\sin^248^o\)
\(M=\cos^248^o+\cos^247^o+\cos^246^o+\sin^245^o+\sin^246^o+\sin^247^o+\sin^248^o\)
\(M=\left(\sin^248^o+\cos^248^o\right)+\left(\sin^247^o+\cos^247^o\right)+\left(\sin^246^o+\cos^246^o\right)+\sin^245^o\)
\(M=1+1+1+0,5\)
\(M=3,5\)
bài 1
b) \(N=\cos^215^o-\cos^225^o+\cos^235^o-\cos^245^o+\cos^255^o-\cos^265^o+\cos^275^o\)
\(N=\sin^275^o-\sin^265^o+\sin^255^o-\cos^245^o+\cos^255^o-\cos^265^o+\cos^275^o\)
\(N=\left(\sin^275^o+\cos^275^o\right)-\left(\sin^265^o+\cos^265^o\right)+\left(\sin^255^o+\cos^255^o\right)-\cos^245^o\)
\(N=1-1+1-0,5\)
\(N=0,5\)
Bài 1: không dùng bảng số, máy tính bỏ túi hãy tính giá trị của các biểu thức
a, M=sin^2 42 + sin^2 43 + sin^2 44 + sin^2 45 + sin^2 46 + sin^2 47 + sin^2 48
b, cos^21 5 - cos^2 25 + cos^2 35 - cos^2 45 + cos^2 55 - cos^2 65 + cos^2 75
Bài 2: chứng minh rằng giá trị của biểu thức sau ko phụ thuộc vào giá trị a ( 0 < a <90)
a, (1- cosa)/sina - sina/(1+cosa)
b, tan^2 a - sin^2 a - tan^2 a.sin^2 a
c,(cosa−sina)2−(cosa+sina)2cosa.sina(cosa−sina)2−(cosa+sina)2cosa.sina
Bài 3 cho
sinx + cosx = căn2
Chứng minh rằng sinx =cosx , tìm x
Bài 4 : Không dùng máy tính sắp xếp các TSLG sau :
sin 49 , cot 15 ,tan 65 , cos 50, cot 14