tìm X: 3 x [1/5x8 + 1/8x11 + 1/11x14 + ... + 1/97x100 + X] = 319/100
1/5x8±1/8x11±1/11x14±...±1/x(x±3)=27/480
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{27}{480}\)
\(\Rightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{27}{480}.\frac{1}{3}\)
\(\Rightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{3}{160}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{1}{160}\)
\(\Rightarrow\frac{1}{x+3}=\frac{31}{160}\)
\(\Rightarrow160=31x+93\)
\(\Rightarrow31x=67\)
\(\Rightarrow x=\frac{67}{31}\)
Tính tổng
S= 1/2x5 + 1/5x8 + 1/8x11 + 1/11x14 + .... + 1/97x100
Các bạn giải nhanh hộ mik nha mik cần bài để nộp gấp
S= 1/2x5 + 1/5x8 + 1/8x11 + 1/11x14 + .... + 1/97x100
S = 1/2 x 1/5 + 1/5 x 1/8 + 1/8 x 1/11 + 1/11 x 1/14 + .......+ 1/97 x 1/100
S = 1/2 x ( 1/5 + 1/5 x 1/8 + 1/8 x 1/11 + 1/11 x 1/14 + .......+ 1/97 ) x 1/100
S = 1/2 x 1/100
S = 1/200
~ Hok T ~
\(S=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{97\cdot100}\)
\(S=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+....+\frac{3}{97\cdot100}\right)\)
\(S=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}\cdot\frac{49}{100}\)
\(S=\frac{49}{300}\)
Tìm X biết \(\frac{1}{5x8}+\frac{1}{8x11}+\frac{1}{11x14}+...+\frac{1}{Xx\left(x+3\right)}=\frac{101}{1504}\)
3X/2x5 + 3X/5x8 + 3X/8x11 + 3X/11x14 =1/21
Ta có: \(\frac{3x}{2\cdot5}+\frac{3x}{5\cdot8}+\frac{3x}{8\cdot11}+\frac{3x}{11\cdot14}=\frac{1}{21}\)
\(\Leftrightarrow x\cdot\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}\right)=\frac{1}{21}\)
\(\Leftrightarrow x\cdot\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\right)=\frac{1}{21}\)
\(\Leftrightarrow x\cdot\left(\frac{1}{2}-\frac{1}{14}\right)=\frac{1}{21}\)
\(\Leftrightarrow x\cdot\frac{3}{7}=\frac{1}{21}\)
\(\Leftrightarrow x=\frac{1}{21}:\frac{3}{7}=\frac{1}{21}\cdot\frac{7}{3}=\frac{7}{63}=\frac{1}{9}\)
Vậy: \(x=\frac{1}{9}\)
Tìm x biết: \(\frac{1}{5X8}+\frac{1}{8X11}+\frac{1}{11X14}+.....+\frac{1}{xX\left(x+3\right)}=\frac{101}{1540}\)
1/2x5+1/5x8+1/8x11+...............+1/97x100
\(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+....+\frac{1}{97\cdot100}\)
\(=\frac{5-2}{2\cdot5}+\frac{8-5}{5\cdot8}+\frac{11-8}{8\cdot11}+...+\frac{100-97}{97\cdot100}\)
\(=\frac{1}{3}\cdot\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=\frac{1}{3}\cdot\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=\frac{1}{3}\cdot\frac{49}{100}=\frac{49}{300}\)
1/5x8+1/8x11+1/11x14+...+1/mx(m+3)=101/1540
Lời giải:
$\frac{1}{5\times 8}+\frac{1}{8\times 11}+\frac{1}{11\times 14}+...+\frac{1}{m\times (m+3)}=\frac{101}{1540}$
$\frac{8-5}{5\times 8}+\frac{11-8}{8\times 11}+\frac{14-11}{11\times 14}+...+\frac{(m+3)-m}{m\times (m+3)}=\frac{303}{1540}$
$\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{m}-\frac{1}{m+3}=\frac{303}{1540}$
$\frac{1}{5}-\frac{1}{m+3}=\frac{303}{1540}$
$\frac{1}{m+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}$
$\Rightarrow m+3=308$
$\Rightarrow m=308-3=305$
Lời giải:
$\frac{1}{5\times 8}+\frac{1}{8\times 11}+\frac{1}{11\times 14}+...+\frac{1}{m\times (m+3)}=\frac{101}{1540}$
$\frac{8-5}{5\times 8}+\frac{11-8}{8\times 11}+\frac{14-11}{11\times 14}+...+\frac{(m+3)-m}{m\times (m+3)}=\frac{303}{1540}$
$\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{m}-\frac{1}{m+3}=\frac{303}{1540}$
$\frac{1}{5}-\frac{1}{m+3}=\frac{303}{1540}$
$\frac{1}{m+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}$
$\Rightarrow m+3=308$
$\Rightarrow m=308-3=305$
Tìm x biết :
\(\dfrac{X}{2x5}+\dfrac{X}{5x8}+\dfrac{X}{8x11}+\dfrac{X}{11x14}+...+\dfrac{X}{32x35}=\dfrac{33}{70}\)
\(\Leftrightarrow x\cdot\dfrac{1}{3}\cdot\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{32\cdot35}\right)=\dfrac{33}{70}\)
=>\(x\cdot\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{32}-\dfrac{1}{35}\right)=\dfrac{33}{70}\)
=>\(x\cdot\dfrac{1}{3}\cdot\dfrac{33}{70}=\dfrac{33}{70}\)
=>x=3
x/2x5+x/5x8+x/8x11+x/11x14+...+x/32x35=33/70
\(\dfrac{x}{2\times5}+\dfrac{x}{5\times8}+\dfrac{x}{8\times11}+\dfrac{x}{11\times14}+...+\dfrac{x}{32\times35}=\dfrac{33}{70}\)
\(\dfrac{x}{3}\cdot\left(\dfrac{3}{2\times5}+\dfrac{3}{5\times8}+\dfrac{3}{8\times11}+\dfrac{3}{11\times14}+...+\dfrac{3}{32\times35}\right)=\dfrac{33}{70}\)
\(\dfrac{x}{3}\cdot\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{32}-\dfrac{1}{35}\right)=\dfrac{33}{70}\)
\(\dfrac{x}{3}\cdot\left(\dfrac{1}{2}-\dfrac{1}{35}\right)=\dfrac{33}{70}\)
\(\dfrac{x}{3}\cdot\dfrac{33}{70}=\dfrac{33}{70}\)
\(\dfrac{x}{3}=\dfrac{33}{70}:\dfrac{33}{70}\)
\(\dfrac{x}{3}=1\)
\(x=3\)