Giải phương trình
a) \(\sqrt{6x-x^2}+2x^2-12x+15=0\)0
\(^{x^2+2x\sqrt{x-\frac{1}{x}}=}\)3x+1
Giải phương trình
'a) \(\sqrt{6x-x^2}+2x^2-12x+15\)= 0
b) \(x^2+2x\sqrt{x-\frac{1}{x}}=3x+1\)
Giải phương trình
a) \(\sqrt{2x-5}=\sqrt{x+3}\)
b) \(\sqrt{2x^2-x+4}-2=x\)
c) \(\sqrt{1-x}=\sqrt{3x+2}\)
d) \(\sqrt{2x-3}=\sqrt{x-2}\)
e) \(\sqrt{x-2}-\sqrt{3+2x}=0\)
giải pt
a) \(\sqrt{2x^2+5x+2}-2\sqrt{2x^2+5x-6}=0\)
b) \(\sqrt[5]{\frac{16x}{x-1}}+\sqrt[5]{\frac{x-1}{16x}}=\frac{5}{2}\)
c) \(\sqrt{6x^2-12x+7}+2x=x^2\)
d) \(x\left(x+1\right)-\sqrt{x^2+x+4}+2=0\)
e) \(\sqrt{3x^2+6x+4}=2-2x-x^2\)
a/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{2x^2+5x+2}=2\sqrt{2x^2+5x-6}\)
\(\Leftrightarrow2x^2+5x+2=4\left(2x^2+5x-6\right)\)
\(\Leftrightarrow6x^2+15x-26=0\)
b/ ĐKXĐ: ...
Đặt \(\sqrt[5]{\frac{16x}{x-1}}=a\)
\(a+\frac{1}{a}=\frac{5}{2}\Leftrightarrow a^2-\frac{5}{2}a+1=0\)
\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[5]{\frac{16x}{x-1}}=2\\\sqrt[5]{\frac{16x}{x-1}}=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}16x=32\left(x-1\right)\\16x=\frac{1}{32}\left(x-1\right)\end{matrix}\right.\)
c/ĐKXĐ: ...
\(\Leftrightarrow x^2-2x-\sqrt{6x^2-12x+7}=0\)
Đặt \(\sqrt{6x^2-12x+7}=a\ge0\Rightarrow x^2-2x=\frac{a^2-7}{6}\)
\(\frac{a^2-7}{6}-a=0\Leftrightarrow a^2-6a-7=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=7\end{matrix}\right.\) \(\Rightarrow\sqrt{6x^2-12x+7}=7\)
\(\Leftrightarrow6x^2-12x-42=0\)
d/ \(\Leftrightarrow x^2+x+4-\sqrt{x^2+x+4}-2=0\)
Đặt \(\sqrt{x^2+x+4}=a>0\)
\(a^2-a-2=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+x+4}=2\Rightarrow x^2+x=0\)
e/ \(\Leftrightarrow x^2+2x+\sqrt{3x^2+6x+4}-2=0\)
Đặt \(\sqrt{3x^2+6x+4}=a>0\Rightarrow x^2+2x=\frac{a^2-4}{3}\)
\(\frac{a^2-4}{3}+a-2=0\)
\(\Leftrightarrow a^2+3a-10=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{3x^2+6x+4}=2\Rightarrow3x^2+6x=0\)
ĐKXĐ:...
a/ \(\sqrt{2x^2+5x+2}=1+2\sqrt{2x^2+5x-6}\)
\(\Leftrightarrow2x^2+5x+2=4\left(2x^2+5x-6\right)+1+4\sqrt{2x^2+5x-6}\)
\(\Leftrightarrow3\left(2x^2+6x-6\right)+4\sqrt{2x^2+5x-6}-7=0\)
Đặt \(\sqrt{2x^2+5x-6}=a\ge0\)
\(3a^2+4a-7=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{7}{3}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+5x-6}=1\)
\(\Leftrightarrow2x^2+5x-7=0\)
Giải phương trình vô tỉ :
a) \(\left(\sqrt{x+3}-\sqrt{x-1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)
b) \(\sqrt{2x+4}-2\sqrt{2-x}=\frac{6x-4}{\sqrt{x^2+4}}\)
c) \(\sqrt{3x^2-4x+2}+\sqrt{3x+1}+\sqrt{2x-1}+6x^3-7x^2-3=0\)
d) \(\sqrt{x^2+15}=3x-2+\sqrt{x^2+8}\)
Giải pt
a) \(2x^2+\sqrt{x^2-5x-6}=10x+15\)
b) \(5\sqrt{3x^2-4x-2}-6x^2+8x+7=0\)
c) \(x^2+\sqrt{2x^2+4x+3}=6-2x\)
d) \(2\sqrt{\frac{3x-1}{x}}=\frac{x}{3x-1}+1\)
e) \(\sqrt{\frac{24x-4}{x}}=\frac{x}{6x-1}+1\)
f) \(\sqrt{\frac{2x-1}{x}}+1+\sqrt{\frac{x}{2x-1}}=\frac{3x}{2x-1}\)
a/ ĐKXĐ: ...
\(\Leftrightarrow2\left(x^2-5x-6\right)+\sqrt{x^2-5x-6}-3=0\)
Đặt \(\sqrt{x^2-5x-6}=a\ge0\)
\(2a^2+a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-5x-6}=1\Leftrightarrow x^2-5x-7=0\)
b/ ĐKXĐ: ...
\(\Leftrightarrow5\sqrt{3x^2-4x-2}-2\left(3x^2-4x-2\right)+3=0\)
Đặt \(\sqrt{3x^2-4x-2}=a\ge0\)
\(-2a^2+5a+3=0\) \(\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{3x^2-4x-2}=3\Leftrightarrow3x^2-4x-11=0\)
c/ \(\Leftrightarrow x^2+2x-6+\sqrt{2x^2+4x+3}=0\)
Đặt \(\sqrt{2x^2+4x+3}=a>0\Rightarrow x^2+2x=\frac{a^2-3}{2}\)
\(\frac{a^2-3}{2}-6+a=0\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+4x+3}=3\Leftrightarrow2x^2+4x-6=0\)
d/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{3x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{3x-1}{x}}=1\Leftrightarrow3x-1=x\)
e/ĐKXĐ: ...
\(\Leftrightarrow2\sqrt{\frac{6x-1}{x}}=\frac{x}{6x-1}+1\)
Đặt \(\sqrt{\frac{6x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{6x-1}{x}}=1\Rightarrow6x-1=x\)
f/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{x}{2x-1}}=a>0\)
\(\frac{1}{a}+1+a=3a^2\)
\(\Leftrightarrow3a^3-a^2-a-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(3a^2+2a+1\right)=0\)
\(\Leftrightarrow a=1\Rightarrow\sqrt{\frac{x}{2x-1}}=1\Rightarrow x=2x-1\)
giải phương trình :
1, \(\sqrt{4-x^2}+2\sqrt[3]{x^4-4x^3+4x^2}=\left(x-1\right)^2+1-\left|x\right|\)
2, \(2x^3+9x^2-6x\left(1+2\sqrt{6x-1}\right)+2\sqrt{6x-1}+8=0\)
3, \(x^3-3x+1=\sqrt{8-3x^2}\)
4, \(\left(4x^2+x-1\right)\sqrt{x^2+x+2}=\left(4x^2+3x+5\right)\sqrt{x^2-1}\)
5, \(\sqrt[3]{3-x^3}=2x^3+x-3\)
6, \(\sqrt[3]{x^2+3x+3}+\sqrt[3]{2x^2+3x+2}=6x^2+12x+8\)
7, \(\frac{x^2+2x-8}{x^2-2x+3}=\left(x+1\right)\left(\sqrt{x+2}-2\right)\)
8, \(\frac{4x-1}{\sqrt{4x-3}}+\frac{11-2x}{\sqrt{5-x}}=\frac{15}{2}\)
9, \(x^2-4x+14+\sqrt{x+4}=2\sqrt{1+12x}+\sqrt{1+\sqrt{1+12x}}\)
bạn đăng
vậy đến bố tổ conf biết
k thì 2 nha
Giải phương trình
a) \(x^2-2x+1=0\)
b)\(1+3x+3x^2+x=0\)
c)\(x+x^4=0\)
d)\(x^3-3x^2+3x-1+x\left(x^2-x\right)=0\)
e)\(x^2+x-12=0\)
g)\(6x^2-11x-10=0\)
a) Ta có: \(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)hay x=1
Vậy: S={1}
c) Ta có: \(x+x^4=0\)
\(\Leftrightarrow x\left(x^3+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)=0\)
mà \(x^2-x+1>0\forall x\)
nên x(x+1)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy: S={0;-1}
Giải các phương trình
a) \(\sqrt{2x+9}=\sqrt{5-4x}\)
b) \(\sqrt{2x-1}=\sqrt{x-1}\)
c) \(\sqrt{x^2+3x+1}=\sqrt{x+1}\)
d) \(\sqrt{2x^2-3}=\sqrt{4x-3}\)
a:Ta có: \(\sqrt{2x+9}=\sqrt{5-4x}\)
\(\Leftrightarrow2x+9=5-4x\)
\(\Leftrightarrow6x=-4\)
hay \(x=-\dfrac{2}{3}\left(nhận\right)\)
b: Ta có: \(\sqrt{2x-1}=\sqrt{x-1}\)
\(\Leftrightarrow2x-1=x-1\)
hay x=0(loại)
c: Ta có: \(\sqrt{x^2+3x+1}=\sqrt{x+1}\)
\(\Leftrightarrow x^2+3x=x\)
\(\Leftrightarrow x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-2\left(loại\right)\end{matrix}\right.\)
a. \(\sqrt{2x+9}=\sqrt{5-4x}\)
<=> 2x + 9 = 5 - 4x
<=> 2x + 4x = 5 - 9
<=> 6x = -4
<=> x = \(\dfrac{-4}{6}=\dfrac{-2}{3}\)
d: Ta có: \(\sqrt{2x^2-3}=\sqrt{4x-3}\)
\(\Leftrightarrow2x^2-3=4x-3\)
\(\Leftrightarrow2x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=2\left(nhận\right)\end{matrix}\right.\)
Giải phương trình
a) \(\left(\sqrt{1+x}+\sqrt{1-x}\right)\left(2+2\sqrt{1-x^2}\right)=8\)
b) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
a. ĐKXĐ: \(-1\le x\le1\)
Đặt \(\sqrt{1+x}+\sqrt{1-x}=t>0\)
\(\Rightarrow t^2=2+2\sqrt{1-t^2}\)
Pt trở thành:
\(t.t^2=8\Leftrightarrow t^3=8\Leftrightarrow t=2\)
\(\Rightarrow\sqrt{1+x}+\sqrt{1-x}=2\)
\(\Leftrightarrow2+2\sqrt{1-x^2}=2\)
\(\Leftrightarrow1-x^2=0\Rightarrow x=\pm1\)
b.
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)
\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\)
Pt trở thành:
\(t=t^2-4-16\Leftrightarrow...\)