Tìm GTNN của \(A=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\) với x, y, z > 0
Với x,y,z >0 và x+y+z = \(\sqrt{2}\)
Tìm GTNN của A = \(\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}.\left(\frac{\sqrt{x+y}}{z}+\frac{\sqrt{y+z}}{x}+\frac{\sqrt{z+x}}{y}\right)\)
cho x y z > 0 và x+y+z=12. Tìm GTNN của \(P=\frac{y+z-x}{3x+y-z}+\frac{z+x-y}{3y+z-x}+\frac{x+y-z}{3z+x-y}\)
Tìm GTNN của: \(A=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\) với x, y, z >0
\(A\ge3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\)
\(\Rightarrow A_{min}=3\) khi \(x=y=z\)
Cho x, y, z > 0. Tìm GTNN của biểu thức P = \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
Anh xét hiệu P - 3/2 rồi làm như cách của em: Câu hỏi của Namek kian - Toán lớp 9 ạ ! Từ đó suy ra P >= 3/2. Hoặc có thể làm thẳng luôn như 4 bạn kia.
\(P=\frac{x}{y+z}+1+\frac{y}{z+x}+1+\frac{z}{x+y}+1-3\)
\(=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}-3\)
\(=\left(x+y+z\right)\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)-3\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\ge\frac{9}{2\left(x+y+z\right)}\)
\(\Leftrightarrow P\ge\left(x+y+z\right).\frac{9}{2\left(x+y+z\right)}-3=\frac{3}{2}\left(đpcm\right)\)
Dấu '=' xảy ra khi \(x=y=z\)
:))
tth giai thich cho anh tai sao cai cuoi lai lon hon hoac bang 0 di
Cho x, y, z > 0 . Tìm GTNN của biểu thức :
\(P=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
đây là cách lớp 9 nên cố hiểu nhá , ngoài ra có thể tham khảo ở sách nâng cao và phát triển toán 8 trang 43
áp dụng BĐT cosi cho 3 số dương ta có
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)
với a=y+z, b=z+x, c=x+y ta đc
\(2\left(x+y+z\right)\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)\ge9\)
\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)\ge4,5\)
\(\Rightarrow\frac{x+y+z}{y+z}+\frac{x+y+z}{x+z}+\frac{x+y+z}{x+y}\ge4,5\)
\(\Rightarrow\frac{x}{y+x}+1+\frac{y}{x+z}+1+\frac{z}{x+y}+1\ge4,5\)
\(\Rightarrow\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\ge1,5\)
vậy minA=1,5 khi y+z=x+z=x+y khi x=y=z
\(P=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\)
\(P=\frac{x^2}{xy+xz}+\frac{y^2}{zy+xy}+\frac{z^2}{xz+yz}\)
Áp dụng bất đẳng thức cộng mẫu số
\(P=\frac{x^2}{xy+xz}+\frac{y^2}{zy+xy}+\frac{z^2}{xz+yz}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\)( 1 )
Theo hệ quả của bất đẳng thức Cauchy ta có
\(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Rightarrow\frac{x^2+y^2+z^2}{xy+yz+xz}\ge1\)
\(\Rightarrow\frac{x^2+y^2+z^2}{2\left(xy+yz+xz\right)}\ge\frac{1}{2}\)
Từ ( 1 )
\(P=\frac{x^2}{xy+xz}+\frac{y^2}{zy+xy}+\frac{z^2}{xz+yz}\ge\frac{1}{2}\)
\(\Rightarrow P\ge\frac{1}{2}\)
Vậy GTNN của \(P=\frac{1}{2}\)
Dấu " = " xảy ra khi \(x=y=z\)
Cho x, y, z > 0 thỏa x+y+z=2. Tìm GTNN của
\(G=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Áp dụng bđt \(\frac{a^2}{m}+\frac{b^2}{n}+\frac{c^2}{p}\ge\frac{\left(a+b+c\right)^2}{m+n+p}\) được
\(G\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)
\(G\ge1\Rightarrow MinG=1\Leftrightarrow\hept{\begin{cases}x=y=z>0\\x+y+z=2\end{cases}\Leftrightarrow}x=y=z=\frac{2}{3}\)
cho x,y,z>0. x+y+z=3 TÌm GTNN của A=\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\)
\(A=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{18}{x+y+z+3}=3\)
Cho x, y, z > 0 và x + y + z = 3.
Tìm GTNN của \(P=\frac{x}{3+y-x}+\frac{y}{3+z-y}+\frac{z}{3+x-z}\)
\(P=\frac{x}{2y+z}+\frac{y}{2z+x}+\frac{z}{2x+y}\)
Áp dụng bđt Cauchy-Schwarz ta có
\(P=\frac{x^2}{2xy+zx}+\frac{y^2}{2yz+xy}+\frac{z^2}{2z+yz}\ge\frac{\left(x+y+z\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Dấu "=" xảy ra khi x=y=z=1
cho x,y,z,t >0
gtnn của A=\(\frac{x-t}{t+y}+\frac{t-y}{y+z}+\frac{y-z}{z+x}+\frac{z-x}{x+t}\)