Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nghĩa lê
Xem chi tiết
Trần Việt Khoa
Xem chi tiết
Trần Minh Hoàng
16 tháng 1 2021 lúc 21:55

Nếu x, y không chia hết cho 3 thì x2 chia cho 3 dư 1, do đó \(\left(x^2+2\right)^2\) chia hết cho 3.

Mà \(2y^4+11y^2+x^2y^2+9\) không chia hết cho 3 nên suy ra vô lí.

Do đó x = 3 hoặc y = 3 (Do x, y là các số nguyên tố).

Với x = 3 ta có \(2y^4+20y^2+9=121\Leftrightarrow y^4+10y^2-56=0\Leftrightarrow\left(y^2-4\right)\left(y^2+14\right)=0\Leftrightarrow y=2\) (Do y là số nguyên tố).

Với y = 3 ta có:

\(\left(x^2+2\right)^2=9x^2+270\Leftrightarrow x^4-5x^2-266=0\Leftrightarrow\left(x^2+14\right)\left(x^2-19\right)=0\). Không tồn tại số nguyên tố x thoả mãn.

Vậy x = 2; y = 3.

Nguyễn Minh Nhật
Xem chi tiết
Xyz OLM
25 tháng 7 2023 lúc 0:11

\(x^2+y^2+2\left(x+y\right)-xy=0\)

\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)

\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)

Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm 

Nguyễn Đức Trí
24 tháng 7 2023 lúc 23:19

\(x^2+y^2-2\left(x+y\right)=xy\)

\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)

Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)

Nguyễn Đức Trí
24 tháng 7 2023 lúc 23:32

Tiếp tục phần tiếp theo

Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\) (vô lý vì 2=2+2.2)

⇒ Không có cặp (x;y) nguyên dương nào thỏa mãn đề bài

Nguyễn Hải Ninh
Xem chi tiết
Nam Nông Thôn
6 tháng 3 2021 lúc 22:34

x(3y+1)+y=13

3x(3y+1)+3y=39

3x(3y+1)+3y+1=39+1
(3x+1)(3y+1)=40

vì 3x+1 và 3y+1 chi 3 dư 1 nên ta có bảng sau:

3x+1140410
x03913
3y+14011040
y130313

Kết luận là ok

Khách vãng lai đã xóa
I lay my love on you
Xem chi tiết
Nguyễn Tất Đạt
13 tháng 1 2019 lúc 21:47

Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)

Nguyễn Tất Đạt
13 tháng 1 2019 lúc 22:29

Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)

Vậy (x;y) = (3;3)

crewmate
Xem chi tiết
Dr.STONE
23 tháng 1 2022 lúc 10:53

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\)=>\(\dfrac{x+y}{xy}=\dfrac{1}{3}\)

=>3(x+y)=xy

=>3x+3y=xy

=>3x=xy-3y

=>3x=y(x-3)

=>y=\(\dfrac{3x}{x-3}\)

* Vì y nguyên nên 3x ⋮ x-3 

=>3(x-3)+9 ⋮x-3

=>9 ⋮ x-3

=>x-3∈Ư(9)

=>x-3∈{1;-1;3;-3;9;-9}

=>x∈{4;2;6;0;12;-6} mà x nguyên dương và x khác 0 nên x∈{4;2;6;12}

=>y∈{12;-6;6;4} mà y nguyên dương nên y∈{12;6;4}

=>x∈{4;6;12}

- Vậy x=4 thì y=12 ; x=6 thì y=6 ; x=12 thì y=4.

Giang Huỳnh
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Nguyễn Tiến Thành
Xem chi tiết