Tìm Min
1)A=(x-1)^2020+/x-1/+100
2)B=/x-8/+/x-9/+/x-10/+2020
A) Với giá trị nào của x thì biểu thức A = 2021 - ( x+5)2 có giá trị lớn nhất? Tìm giá trị lớn nhất đó.
B) So sánh: A = \(\dfrac{2020^{100}-10}{2020^{90}-10}\) với \(B=\dfrac{2020^{99}-1}{2020^{89}-1}\)
Giúp mik với T_T
Cảm ơn nhiềuuuu<333
a: Ta có: \(-\left(x+5\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(x+5\right)^2+2021\le2021\forall x\)
Dấu '=' xảy ra khi x=-5
\(Tìm\) \(x\)∈\(Z\)\(,\) \(biết\)\(:\)
\(a\)) \(\left(x-20\right)+\left(x-19\right)+\left(x-18\right)+...+99+100=100\)
\(b\)) \(213-x.\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}\right):\left(1-\dfrac{1}{2^{2020}}\right)=13\)
a) Quy luật là gì ??
b)
Đặt
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2020}}\\\Rightarrow2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2019}}\\ \Rightarrow2A-A=1-\dfrac{1}{2^{2020}}\Rightarrow A=1-\dfrac{1}{2^{2020}}\)
Suy ra , phương trình trở thành :
213 -x =13
<=> x=200
Tìm Min , Max nếu có
A=(x-1)(x+2)(x+3)(x+6) +2020
Địt con cụ
Dễ thấy x càng lớn thì A càng lớn
vậy ko có Max
Tìm Min \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)+2020\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+2020\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2020\)
Đặt \(x^2+5x=a\)
\(\Rightarrow A=\left(a-6\right)\left(a+6\right)+2020\)
\(=a^2-6a+6a-36+2020\)
\(=a^2+1984\ge1984\left(a^2\ge0\right)\)
Vậy Min A = 1984
Dấu "=" xảy ra khi \(a=0\Leftrightarrow x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
nguoif bí ẩn ko có tên ko đc nói bậy
Bài 1:a)Tính giá trị biểu thức :
A = 3^100 . (-2) + 3^101 / (-3)^101 - 3^100 b) 1/50 + 1/51 + ... + 1/99
b) Tìm x,biết 3^x + 3^x+1 3^x+2 + ... + 3^2017= 3^2020 - 9 / 2
ai nhanh mk K ạ.
A = \(\dfrac{3^{100}.\left(-2\right)+3^{101}}{\left(-3\right)^{101}-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2\right)+3^{100}.3}{\left(-3\right)^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2+3\right)}{3^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.1}{3^{100}.\left(-3-1\right)}\)
A = \(\dfrac{3^{100}}{3^{100}}\) . \(\dfrac{1}{-4}\)
A = - \(\dfrac{1}{4}\)
Tìm x
a. 2x(x-2)+x2=4
b. x3 +6x2+9x =0
c. 5x(x-2020)-x+2020=0
d. 4(x+1)2 . (2x-1)2-8(x-1)(x+1)=11
e (x-3)(x+3x+9)+x(x+2)(2-x)=1
b) \(x^3+6x^2+9x=0\)
\(\Leftrightarrow x^3+3x^2+3x^2+9x=0\)
\(\Leftrightarrow x^2\left(x+3\right)+3x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+3x\right)=0\)
\(\Leftrightarrow\left(x+3\right)x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)^2x=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+3\right)^2=0\\x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=0\end{cases}}}\)
Vậy \(x\in\left\{-3;0\right\}\)
a) \(2x\left(x-2\right)+x^2=4\)
\(\Leftrightarrow2x\left(x-2\right)+x^2-4=0\)
\(\Leftrightarrow2x\left(x-2\right)+\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{3}\end{cases}}}\)
Vậy \(x\in\left\{\frac{-2}{3};2\right\}\)
c) \(5x\left(x-2020\right)-x+2020=0\)
\(\Leftrightarrow5x\left(x-2020\right)-\left(x-2020\right)=0\)
\(\Leftrightarrow\left(x-2020\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2020=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2020\\x=\frac{1}{5}\end{cases}}}\)
Vậy \(x\in\left\{\frac{1}{5};2020\right\}\)
1. Tìm a,b ∈ N
\(2^a-2^b=256\)
2.Tìm x,y ∈ Z
\(2020^x+2020^y=2020^{x+y}\)
\(1,\Rightarrow2^b\left(2^{a-b}-1\right)=256=2^8\left(a>b\right)\)
Do \(2^b\) chẵn, \(2^{a-b}-1\) lẻ, \(2^8\) chẵn nên \(2^{a-b}-1=1\Leftrightarrow2^{a-b}=2\Leftrightarrow a-b=1\)
\(\Leftrightarrow2^b\cdot1=2^8\Leftrightarrow b=8\Leftrightarrow a=9\)
Vậy \(\left(a;b\right)=\left(8;9\right)\)
Bài 1:
Từ đkđb hiển nhiên $a>b\Rightarrow a-b\geq 1$
$2^a-2^b=256$
$\Leftrightarrow 2^b(2^{a-b}-1)=256=2^8$
$\Leftrightarrow 2^{a-b}-1=2^{8-b}$
Với $a-b\geq 1$ thì $2^{a-b}$ chẵn, kéo theo $2^{a-b}-1$ lẻ
$\Rightarrow 2^{8-b}$ lẻ. Điều này xảy ra khi $8-b=0$
$\Leftrightarrow b=8$. Khi đó: $2^{a-b}-1=2^0=1$
$\Leftrightarrow 2^{a-b}=2=2^1\Leftrightarrow a-b=1$
$\Leftrightarrow a=b+1=9$
Vậy $(a,b)=(9,8)$
Bài 2: Không mất tổng quát giả sử $x\geq y$
$2020^x+2020^y=2020^{x+y}$
$\Leftrightarrow 2020^y(2020^{x-y}+1-2020^x)=0$
$\Leftrightarrow 2020^{x-y}+1-2020^x=0$
$\Rightarrow 2020^x=2020^{x-y}+1>1\Rightarrow x>0$
$\Rightarrow 2020^{x-y}+1\vdots 2020$
$\Rightarrow 2020^{x-y}\not\vdots 2020$
$\Rightarrow x-y=0$. Mà $2020^0+1=2\not\vdots 2020$ nên loại
Vậy không tồn tại $x,y$ thỏa mãn.
cho x,y>0 thỏa mãn x+y=1 Tìm MIN A=2x2-y2+x+1/x+2020
Cho hàm số \(f\left(x\right)=\frac{100^x}{100^x+10}\)
a, Chứng minh rằng nếu a,b là 2 số thỏa mãn a + b = 1 thì f(a) + f(b) = 1
b,Tính tổng \(A=f\left(\frac{1}{2020}\right)+f\left(\frac{2}{2020}\right)+...+f\left(\frac{2019}{2020}\right)\)
Cho hàm số \(f\left(x\right)=\frac{100^x}{100^x+10}\)
a, Chứng minh rằng nếu a,b là 2 số thỏa mãn a + b = 1 thì f(a) + f(b) = 1
b,Tính tổng \(A=f\left(\frac{1}{2020}\right)+f\left(\frac{2}{2020}\right)+...+f\left(\frac{2019}{2020}\right)\)