Cho tam giác ABC. Gỉa sử vecto OA+ vecto OB= vecto OM; vecto OA-vecto OB= vecto ON. Khi nào điểm M nằm trên đường phân giác góc AOB? Điểm N nằm trên phân giác ngoài góc AOB?
cho tam giác OAB .giả sử
{vecto OA + vecto OB = vecto OM
{vecto OA -vecto OB= vecto ON
a, khi nào thì điểm M nằm trên đường phân giác trọng của góc AOB?
b, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ngoài,,,,,,,,,,,,,,,,,,,,,,,,,,?
mình sửa lại ý
b, khi nào thì N nằm trên đường phân giác ngoài của góc AOB
Cho tam giác ABC.
a. Xác định điểm M thoả mãn đẳng thức vectơ: 2 vecto MA - vecto MB + vecto MC = vecto 0
b. Chứng minh rằng: 2 vecto OA - vecto OB + vecto OC = 2 vecto OM với điểm O bất kỳ
Cho tam giác ABC. A' đối xứng với B qua A, B' đối xứng với C qua B. C' đối xứng với A qua C. Chứng minh vecto OA+ vecto OB+ vecto OC= vecto OA'+ vecto OB'+ vecto OC'
Cho tam giác ABC. A' đối xứng với B qua A, B' đối xứng với C qua B. C' đối xứng với A qua C. CM: vecto OA+ vecto OB+ vecto OC=vecto OA'+ vecto OB'+ vecto OC'
Bẹn tự vẽ hình nhé
Vì A' đối xứng với B qua A => AA' =AB
=. \(\overrightarrow{A'A}=\overrightarrow{AB}\)
Vì B' đối xứng với C qua B => \(\overrightarrow{B'B}=\overrightarrow{BC}\)
Vì C' đối xứng với A qua C => \(\overrightarrow{C'C}=\overrightarrow{CA}\)
Ta có: \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\left(\overrightarrow{OA'}+\overrightarrow{A'A}\right)+\left(\overrightarrow{OB'}+\overrightarrow{B'B}\right)+\left(\overrightarrow{OC'}+\overrightarrow{C'C}\right)\)
\(=\left(\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}\right)+\left(\overrightarrow{A'A}+\overrightarrow{B'B}+\overrightarrow{C'C}\right)\)
Lại có: \(\overrightarrow{A'A}+\overrightarrow{B'B}+\overrightarrow{C'C}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}\)\(=\left(\overrightarrow{AB}+\overrightarrow{BC}\right)+\overrightarrow{CA}=\overrightarrow{AC}+\overrightarrow{CA}=\overrightarrow{AC}-\overrightarrow{AC}=0\)
\(\Rightarrow\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}+0=\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}\)
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau, OA=OB=OC = x Gọi H là trực tâm tam giác ABC. M,N lần lượt là trung điểm OB,BC. G là trọng tâm tam giác OBC. P thuộc cạnh AC sao cho PA = 2PC Đặt OA= vecto a, OB= vecto b, OC= vecto c a). Hãy biểu diễn các vecto MG, PN theo a, b, c b) Tính góc giữa hai đường thàng MP và CN. c) Chứng minh rằng OH vuông góc HB
cho tam giác ABC
tìm điểm O sao cho : vecto OA+vecto OB+vecto OC= vecto 0
tìm điểm K sao cho : vecto KA+2 vecto KB= vecto CB
tìm điểm M sao cho : vecto MA+ vecto MB+ 2 vecto MC = vecto 0
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\)⇒ O là trọng tâm tam giác ABC
\(\overrightarrow{K\text{A}}+2\overrightarrow{KB}=\overrightarrow{CB}=\overrightarrow{0}\Rightarrow\overrightarrow{K\text{A}}+\overrightarrow{KB}+\overrightarrow{KB}+\overrightarrow{BC}=\overrightarrow{0}\Rightarrow\overrightarrow{K\text{A}}+\overrightarrow{KB}+\overrightarrow{KC}=\overrightarrow{0}\)
⇒ K là trọng tâm tam giác ABC
Câu cuối chịu :))
Cho tam giác abc và điểm O thôi mãn:
| vecto OA|=vecto OB=|vecto OC|
Vecto OA + vecto OB+ vecto OC= vecto O
Tinh góc AOB,góc BOC,góc COA
Giúp e với ạ
\(\left|\overrightarrow{OA}\right|=\left|\overrightarrow{OB}\right|=\left|\overrightarrow{OC}\right|\Leftrightarrow OA=OB=OC\Leftrightarrow O\) là tâm đường tròn ngoại tiếp tam giác ABC (1)
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\Leftrightarrow O\) là trọng tâm tam giác ABC (2)
(1); (2) \(\Rightarrow\) ABC là tam giác đều
\(\Rightarrow\widehat{AOB}=\widehat{BOC}=\widehat{COA}=120^0\)
Cho tam giác ABC. Gọi M,N,P lần lượt là trung điểm AB, AC ,BC. CMR:
a)Vecto MA+NB+PC=vecto không
b)Với mọi điểm O bất kì: Vecto OA+OB+OC=Vecto OM+ON+OP
c)Gọi A' là điểm đối xứng của B qua A, B' là điểm đối xứng với C qua B, C' là điểm đối xứng của A qua C, với một điểm O bất kì, ta có: vecto OA+OB+OC=vecto OA'+OB'+OC'
a,vì N là trung điểm AC nên 2BN=BA+BC ta có
MA+NB+PC=1/2BA+1/2BC+NB=1/2 (BA+BC)+NB=1/2×2×BN+NB=BN+NB=0 (TM đề bài )
b, vì M;N;P làtrung điểm AB;AC;BC
2OM+2ON+2OP=OA+OB+OA+OC+OB+OC
=2OA+2OB+2OC
suy ra OM+ON+OP=OA+OB+OC
c,
Cm tương tự
2OB=OB'+OC
2OA=OA'+OB
2OC=OA+OC'
suy ra
2OA+2OB+2OC=OA+OB+OC+OA'+OB'+OC'
suy ra OA+OB+OC=OA'+OB'+OC'
C1 : cho hình chữ nhật ABCD tâm O có AB=1 , BC = căn 3. Độ dài của vecto OA+ vecto OB + vecto OC là bao nhiêu? ( Giair chi tiết hộ mk vs ) C2 : Cho ABC. Tồn tại O sao cho OA=OB=OC và vecto OA+vecto OB +vecto OC= vecto 0. Hỏi tam giác ABC là tam giác gì ?
C3 : Cho 2 tam giác ABC và DEF có cùng trọng tâm. đẳng thức nào sau đây là sai ?
A. vecto AE+vecto BF+vecto CD = vecto 0
B. vecto AD+vecto BF + vecto CF =vecto 0
C. vecto DB + vecto EC + vecto FA=vecto 0
D. vecto AE + vecto BF + vecto CE = vecto 0 P/S: GIÚP MK VS MK CẦN GẤP. GIẢI TỰ LUẬN RA NHÉ. THANKS RẤT NHIỀU.
C4 : Cho tam giác ABC và điểm M thỏa mãn vecto MA-MB-MC= vecto 0. Mệnh đề nào sau đây đúng A. M là trung điểm AC B. M là trọng tâm tam giác ABC C. ABCM là hình bình hành d. ABMC là hình bình hành P/S mk cần ngay nhaaaaa