Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Phú Lợi
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2021 lúc 20:06

a: f(0)=-4,5

f(-1)=4,5

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 9 2017 lúc 16:13

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 5 2018 lúc 5:32

Vũ Thị Khánh Linh
25 tháng 4 lúc 21:04

Làm như vậy hả

Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
22 tháng 2 2022 lúc 20:13

Em xin phép nhờ  quý thầy cô và các bạn giúp đỡ với ạ!

 

Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 3 2022 lúc 12:54

\(x^3+y^3+3xy\le1\Leftrightarrow\left(x+y\right)^3-1-3xy\left(x+y\right)+3xy\le0\)

\(\Leftrightarrow\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\le0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\le0\)

Do \(x^2+y^2-xy+x+y+1=\left(x-\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+x+y+1>0\)

\(\Rightarrow x+y-1\le0\Rightarrow x+y\le1\)

\(\Rightarrow P=\left(x+\dfrac{1}{4x}\right)+\left(y+\dfrac{1}{4y}\right)+\dfrac{3}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow P\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{y}{4y}}+\dfrac{3}{4}.\dfrac{4}{x+y}\ge2+\dfrac{3}{4}.\dfrac{4}{1}=5\)

\(P_{min}=5\) khi \(x=y=\dfrac{1}{2}\)

Nguyễn Hoàng Long
Xem chi tiết
Hoàng Nga Thi
Xem chi tiết
Nguyễn Minh Anh
Xem chi tiết
Lê Tài Bảo Châu
9 tháng 5 2021 lúc 8:59

\(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)

\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+4xy+\frac{3}{2xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+4xy+\frac{1}{4xy}+\frac{5}{4xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{4xy}\)

Ta có BĐT phụ: \(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)(đúng )

Dấu "=" xảy ra <=> x=y

\(\Rightarrow P\ge\frac{4}{\left(x+y\right)^2}+2+\frac{5}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1}+2+\frac{5}{1}=11\)

Dấu"=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy Min P =11 \(\Leftrightarrow x=y=\frac{1}{2}\)

Khách vãng lai đã xóa
Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 3 2022 lúc 15:33

\(\dfrac{1}{x^2+2}-\dfrac{1}{xy+2}+\dfrac{1}{y^2+2}-\dfrac{1}{xy+2}=0\)

\(\Leftrightarrow\dfrac{xy-x^2}{\left(x^2+2\right)\left(xy+2\right)}+\dfrac{xy-y^2}{\left(y^2+2\right)\left(xy+2\right)}=0\)

\(\Leftrightarrow\dfrac{x-y}{xy+2}\left(\dfrac{y}{y^2+2}-\dfrac{x}{x^2+2}\right)=0\)

\(\Leftrightarrow\left(\dfrac{x-y}{xy+2}\right)\left(\dfrac{x^2y+2y-xy^2-2x}{\left(x^2+2\right)\left(y^2+2\right)}\right)=0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(xy-2\right)}{\left(xy+2\right)\left(x^2+2\right)\left(y^2+2\right)}=0\)

\(\Leftrightarrow xy=2\) (do x;y phân biệt)

\(\Rightarrow P=\dfrac{2}{xy+2}+\dfrac{2}{xy+2}=\dfrac{4}{xy+2}=\dfrac{4}{2+2}=1\)