Tìm giá trị của y thỏa mãn
aaa ÷37×y=a
Mình nhờ các bạn.
cho hàm số y = f(x) được xác định bởi công thức y = -4.5x
a) hãy tính f(0); f(-1)
b) biết điểm A (a;9) thuộc đồ thị hàm số trên tìm giá trị của a
mình đi thi về mà có câu này mình không biết làm nên chép bài bạn bên cạnh bạn naofgioir toán giải giúp mình với mình hơi lo
Tìm giá trị của y thỏa mãn: a a a ¯ : 37 x y = a
Tìm giá trị của y thỏa mãn
a a a ¯ : 37 x y = a
Cho \(x;y\) là các số thực thỏa mãn : \(5x^2+2xy+2y^2=9\).
Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{x-1`}{4x-y-9}\).
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn hỗ trợ giúp đỡ với ạ!
Em cám ơn nhiều ạ!
Em xin phép nhờ quý thầy cô và các bạn giúp đỡ với ạ!
Cho hai số thực dương \(x;y\) thỏa mãn \(x^3+y^3+3.x.y\le1\). Tìm giá trị nhỏ nhất của biểu thức sau
\(P=x+y+\dfrac{1}{x}+\dfrac{1}{y}\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn vui lòng giúp đỡ em tham khảo với ạ !
Em cám ơn rất nhiều ạ!
\(x^3+y^3+3xy\le1\Leftrightarrow\left(x+y\right)^3-1-3xy\left(x+y\right)+3xy\le0\)
\(\Leftrightarrow\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\le0\)
\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\le0\)
Do \(x^2+y^2-xy+x+y+1=\left(x-\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+x+y+1>0\)
\(\Rightarrow x+y-1\le0\Rightarrow x+y\le1\)
\(\Rightarrow P=\left(x+\dfrac{1}{4x}\right)+\left(y+\dfrac{1}{4y}\right)+\dfrac{3}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
\(\Rightarrow P\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{y}{4y}}+\dfrac{3}{4}.\dfrac{4}{x+y}\ge2+\dfrac{3}{4}.\dfrac{4}{1}=5\)
\(P_{min}=5\) khi \(x=y=\dfrac{1}{2}\)
Tìm các giá trị nguyên của x, y sao cho x2(y-1) + y2(x-1) = 3.
Nhờ các bạn giải chi tiết giúp mình. Cảm ơn các bạn nhiều.
cho các số dương x,y thỏa mãn x+y=1 . Tìm giá trị nhỏ nhất của P=1/x^2+y^2+2/xy+4xy
mong các bạn giải giúp ạ . thank
\(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+4xy+\frac{3}{2xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+4xy+\frac{1}{4xy}+\frac{5}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{4xy}\)
Ta có BĐT phụ: \(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)(đúng )
Dấu "=" xảy ra <=> x=y
\(\Rightarrow P\ge\frac{4}{\left(x+y\right)^2}+2+\frac{5}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1}+2+\frac{5}{1}=11\)
Dấu"=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy Min P =11 \(\Leftrightarrow x=y=\frac{1}{2}\)
Cho \(x;y\) là 2 số thực phân biệt thỏa mãn: \(\dfrac{1}{x^2+2}+\dfrac{1}{y^2+2}=\dfrac{2}{xy+2}\). Tính giá trị của biểu thức sau : \(P=\dfrac{1}{x^2+2}+\dfrac{1}{y^2+2}+\dfrac{2}{x.y+2}\).
P/s: Em xin phép nhờ quý thầy cô và các bạn yêu toán giúp đỡ em tham khảo với ạ.
Em cám ơn nhiều lắm ạ!
\(\dfrac{1}{x^2+2}-\dfrac{1}{xy+2}+\dfrac{1}{y^2+2}-\dfrac{1}{xy+2}=0\)
\(\Leftrightarrow\dfrac{xy-x^2}{\left(x^2+2\right)\left(xy+2\right)}+\dfrac{xy-y^2}{\left(y^2+2\right)\left(xy+2\right)}=0\)
\(\Leftrightarrow\dfrac{x-y}{xy+2}\left(\dfrac{y}{y^2+2}-\dfrac{x}{x^2+2}\right)=0\)
\(\Leftrightarrow\left(\dfrac{x-y}{xy+2}\right)\left(\dfrac{x^2y+2y-xy^2-2x}{\left(x^2+2\right)\left(y^2+2\right)}\right)=0\)
\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(xy-2\right)}{\left(xy+2\right)\left(x^2+2\right)\left(y^2+2\right)}=0\)
\(\Leftrightarrow xy=2\) (do x;y phân biệt)
\(\Rightarrow P=\dfrac{2}{xy+2}+\dfrac{2}{xy+2}=\dfrac{4}{xy+2}=\dfrac{4}{2+2}=1\)