Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Phương Nga
Xem chi tiết
Nguyễn Thị Mát
27 tháng 11 2019 lúc 21:24

Cách : AM - GM :

\(VT=3-\left(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}\right)\left(1\right)\)

Áp dụng BĐT AM - GM :

\(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}=\frac{2ab^2}{ab^2+ab^2+1}+\frac{2bc^2}{bc^2+bc^2+1}+\frac{2ca^2}{ca^2+ca^2+1}\)

\(\le\frac{2ab^2}{3\sqrt[3]{a^2b^4}}+\frac{2bc^2}{3\sqrt[3]{b^2c^4}}+\frac{2ca^2}{3\sqrt[3]{c^aa^4}}=\frac{2}{3}\left(\sqrt[3]{ab^2}+\sqrt[3]{bc^2}+\sqrt[3]{ca^2}\right)\)

\(\le\frac{2}{3}\left(\frac{a+b+b}{3}+\frac{b+c+c}{3}+\frac{c+a+a}{3}\right)=\frac{2}{3}\left(a+b+c\right)=2\left(2\right)\)

Từ (1) và (2) \(\Rightarrow VT\ge3-2=1\left(đpcm\right)\)

Khách vãng lai đã xóa
hanvu
Xem chi tiết
Trần Phúc Khang
31 tháng 7 2019 lúc 19:53

1. BĐT ban đầu

<=> \(\left(\frac{1}{3}-\frac{b}{a+3b}\right)+\left(\frac{1}{3}-\frac{c}{b+3c}\right)+\left(\frac{1}{3}-\frac{a}{c+3a}\right)\ge\frac{1}{4}\)

<=>\(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)

<=> \(\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ac}\ge\frac{3}{4}\)

Áp dụng BĐT buniacoxki dang phân thức 

=> BĐT cần CM

<=> \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ac\right)}\ge\frac{3}{4}\)

<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng 

=> BĐT được CM

Phùng Minh Quân
31 tháng 7 2019 lúc 21:15

2) \(a+b+c\le ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a+b+c-3\right)\ge0\)\(\Leftrightarrow\)\(a+b+c\ge3\)

ko mất tính tổng quát giả sử \(a\ge b\ge c\)

Có: \(3\le a+b+c\le ab+bc+ca\le3a^2\)\(\Leftrightarrow\)\(3a^2\ge3\)\(\Leftrightarrow\)\(a\ge1\)

=> \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le\frac{3}{1+2a}\le1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

Trần Phúc Khang
31 tháng 7 2019 lúc 21:46

Bạn @Diệu Linh@ làm nhầm dòng 5 rồi nhé

2, BĐT ban đầu 

<=> \(\left(1-\frac{1}{1+a+b}\right)+\left(1-\frac{1}{1+b+c}\right)+\left(1-\frac{1}{1+a+c}\right)\ge2\)

<=> \(\frac{\left(a+b\right)^2}{a+b+\left(a+b\right)^2}+\frac{\left(b+c\right)^2}{b+c+\left(b+c\right)^2}+\frac{\left(c+a\right)^2}{c+a+\left(c+a\right)^2}\ge2\)

Dùng BĐT buniacoxki dạng phân thức ở VT 

\(VT\ge\frac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)+\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}\)

Mà \(a+b+c\le ab+bc+ac\)

=> \(VT\ge\frac{4\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)+2\left(a^2+b^2+c^2+ab+bc+ac\right)}=\frac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)^2}=2\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

Tuyển Trần Thị
Xem chi tiết
alibaba nguyễn
30 tháng 9 2017 lúc 9:08

Ta có:

\(3=a+b+c\ge3\sqrt[3]{abc}\)

\(\Leftrightarrow abc\le1\)

Từ đó ta có:

\(\frac{1}{1+2ab^2}+\frac{1}{1+2bc^2}+\frac{1}{1+2ca^2}\)

\(\ge\frac{1}{1+\frac{2b}{c}}+\frac{1}{1+\frac{2c}{a}}+\frac{1}{1+\frac{2a}{b}}\)

\(=\frac{c}{c+2b}+\frac{a}{a+2c}+\frac{b}{b+2a}\)

\(=\frac{c^2}{c^2+2bc}+\frac{a^2}{a^2+2ca}+\frac{b^2}{b^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

lê quỳnh như
Xem chi tiết
Thắng Nguyễn
7 tháng 10 2016 lúc 18:56

Ta áp dụng Bđt Cauchy ngược dấu

\(T=\frac{1}{2ab^2+1}+\frac{1}{2bc^2+1}+\frac{1}{2ca^2+1}\ge1\)

\(\Leftrightarrow\frac{a^2b}{2ab^2+1}+\frac{b^2c}{2bc^2+1}+\frac{c^2a}{2ca^2+1}\le1\)

\(\frac{ab^2}{2ab^2+1}\le\frac{ab^2}{3\sqrt[3]{ab^2\cdot ab^2\cdot1}}\)\(\le\frac{\sqrt[3]{ab^2}}{3}\le\frac{a+2b}{9}\left(1\right)\)

Tương tự ta có:

\(\frac{b^2c}{2bc^2+1}\le\frac{b+2c}{9}\left(2\right);\frac{c^2a}{2ca^2+1}\le\frac{c+2a}{9}\left(3\right)\)

Cộng theo vế của (1),(2) và (3) ta có:

\(T\le\frac{a+b+c+2c+2a+2b}{9}\)\(=\frac{3\left(a+b+c\right)}{9}=\frac{a+b+c}{3}=1\)

Dấu = khi a=b=c=1

Tran Le Khanh Linh
17 tháng 4 2020 lúc 20:31

bài náy áp dụng bđt Cosi cũng được

Khách vãng lai đã xóa
Nguyễn Hoàng Tuấn Lâm
Xem chi tiết
Tran Le Khanh Linh
12 tháng 4 2020 lúc 16:43

với mọi x,y,z >0 ta có: \(x+y+z\ge3\sqrt[3]{xyz};\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)

\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{z}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

\(\Rightarrow\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

đẳng thức xảy ra khi x=y=z

ta có: \(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)

đẳng thức xảy ra khi a=b

tương tự: \(\frac{1}{\sqrt{5b^2+2ab+2b^2}}\le\frac{1}{2b+c}\le\frac{1}{9}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)

đẳng thức xảy ra khi b=c

\(\frac{1}{\sqrt{5c^2+2bc+2c^2}}\le\frac{1}{2c+a}\le\frac{1}{9}\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)

đẳng thức xảy ra khi c=a

Vậy \(\frac{1}{\sqrt{5a^2+2ca+2a^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ac+2a^2}}\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\)

\(\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)

đẳng thức xảy ra khi a=b=c=\(\frac{3}{2}\)

Khách vãng lai đã xóa
Nguyễn Hoàng Tuấn Lâm
29 tháng 1 2020 lúc 21:34

Tham khảo bài của mình

Khách vãng lai đã xóa
lili
29 tháng 1 2020 lúc 21:38

đề sai kìa

Khách vãng lai đã xóa
Nguyễn Minh Huy
Xem chi tiết
Kiệt Nguyễn
29 tháng 1 2020 lúc 8:48

Ta sẽ chứng minh: \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)với x,y > 0.

Thật vậy: \(x+y+z\ge3\sqrt[3]{xyz}\)(bđt Cô -si)

và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{abc}}\)(bđt Cô -si)

\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)(Dấu "="\(\Leftrightarrow x=y=z\))

Ta có: \(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)

(Dấu "=" xảy ra khi a = b)

Tương tự ta có:\(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c}\le\frac{1}{9}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)(Dấu "=" xảy ra khi b=c)

\(\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\le\frac{1}{9}\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)(Dấu "=" xảy ra khi c=a)

\(VT=\text{Σ}_{cyc}\frac{1}{\sqrt{5a^2+2ab+b^2}}\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\)

\(\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)

(Dấu "=" xảy ra khi \(a=b=c=\frac{3}{2}\))

Khách vãng lai đã xóa
Nguyễn Minh Huy
30 tháng 1 2020 lúc 11:17

Ô, thanh you, bạn 2k7 sao mà giỏi thế

Khách vãng lai đã xóa
chó bé kute
12 tháng 3 2020 lúc 8:55

mình ko hiểu

Khách vãng lai đã xóa
Trần Huỳnh Tú Trinh
Xem chi tiết
Lê Thị Thục Hiền
9 tháng 9 2019 lúc 21:54

Áp dụng bđt svac-xơ có:

\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\)

<=> \(A\ge\frac{9}{\left(a+b+c\right)^2}\)

Với a,b,c>0 và a+b+c \(\le1\) => 0<(a+b+c)2\(\le1\)=> \(\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)

=>A\(\ge9\)

Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)

Phạm Minh Quang
23 tháng 11 2019 lúc 23:10

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

ta có A\(\ge\frac{9}{\left(a+b+c\right)^2}=9\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

Khách vãng lai đã xóa
Tobot Z
Xem chi tiết
kudo shinichi
6 tháng 3 2019 lúc 10:56

Đặt \(P=\frac{a}{a+2bc}+\frac{b}{b+2ca}+\frac{c}{c+2ab}\)

\(\Leftrightarrow P=\frac{a^2}{a^2+2bca}+\frac{b^2}{b^2+2cab}+\frac{c^2}{c^2+2abc}\)

Áp dụng BĐT Cauchy-schwarz ta có: ( link c/m Cauchy-schwarz: Xem câu hỏi )

\(P\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6abc}=\frac{9}{a^2+b^2+c^2+6abc}\)\(a+b+c=3\))

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

Ta có: \(a+b+c=3\)

Áp dụng BĐT AM-GM ta có:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\Leftrightarrow3\ge3\sqrt[3]{abc}\)

\(\Leftrightarrow1\ge\sqrt[3]{abc}\)

\(\Leftrightarrow1\ge abc\)

\(\Leftrightarrow a^2b^2c^2\ge a^3b^3c^3\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

Áp dụng BĐT AM-GM ta có:

\(ab+bc+ca\ge3.\sqrt[3]{a^2b^2c^2}\ge3.\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

\(\Rightarrow P\ge\frac{9}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}=\frac{9}{9}=1\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\) 

                                đpcm

 
ミ★ɦυүềη☆bùї★彡
Xem chi tiết
Thắng Nguyễn
17 tháng 8 2018 lúc 23:52

Áp dụng BĐT Cauchy-SChwarz ta có:

\(VT=\frac{a^4}{a^2+2a^2bc}+\frac{b^4}{b^2+2ab^2c}+\frac{c^4}{c^2+2abc^2}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2abc\left(a+b+c\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2\cdot\frac{\left(ab+bc+ca\right)^2}{3}}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2\cdot\frac{\left(a^2+b^2+c^2\right)^2}{3}}\)

\(\ge\frac{1^2}{1+2\cdot\frac{1^2}{3}}=\frac{3}{5}=VP\)

Dấu "=" bạn tự nghiên cứu nhé :D

Đen đủi mất cái nik
9 tháng 9 2018 lúc 21:29

DẤU BẰNG XẢY RA\(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\) CÁI NÀY LÀ ĐIỂM RƠI NHÉ.