Phân tích đa thức sau thành nhân tử
m2-16 + n2 - 2mn
Câu 1:Phân tích đa thức thành nhân tử
a/ –6x2y + xy2
b/10a2c – 90b2c + 30bc2 – 10ac2
c/ax + bc – ac – bx
d/36 – x2 + 4xy – 4y2
e/ m2 + n2 + 4m + 4n + 2mn
f/ 2x2 – 1/2y2
\(a,=xy\left(-6x+y\right)\)
\(b,=10c\left(a^2-9b^2+3bc-ac\right)=10c\left[\left(a-3b\right)\left(a+3b\right)-c\left(a-3b\right)\right]\)
\(=10c\left[\left(a-3b\right)\left(a+3b-c\right)\right]\)
c,\(=a\left(x-c\right)-b\left(x-c\right)=\left(a-b\right)\left(x-c\right)\)
d,\(=-\left(x-2y-6\right)\left(x-2y+6\right)\)
e;\(=m^2+4m+mn+n^2+4n+mn=m\left(m+4+n\right)+n\left(m+4+n\right)\)\(=\left(m+n\right)\left(m+n+4\right)\)
f,\(=\dfrac{1}{2}\left(4x^2-y^2\right)=\dfrac{1}{2}\left(2x-y\right)\left(2x+y\right)\)
Bài 1 : Phân tích các đa thức sau thành nhân tử
a) m3p + m2np - m2p2 - mnp2
b) ab( m2 + n2 ) + mn( a2 + b2 )
Bài 2 : Phân tích các đa thức sau thành nhân tử
a) (xy + ab )2 + ( ay - bx )2
b) m2( n - p ) + n2( p - m ) + p2?( m - n )
Bài 3 : Tìm y để giá trị của biểu thức 1 + 4y - y2 là lớn nhất
Bài 4 : Tìm x , biết : ( x3 - x2 ) - 4x2 + 8x - 4 = 0
Bài 5 : Phân tích đa thức sau thành nhân tử
A = ( a + b + c )3 - ( a + b - c )3 - ( b + c - a )3 - ( c + a - b )3
Bài 4:
Ta có: \(\left(x^3-x^2\right)-4x^2+8x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
phân tích đa thức thành nhân tử
a)m^2+2mn+n^2-p^2+2pq-q^2
a: Ta có: \(m^2+2mn+n^2-p^2+2pq+q^2\)
\(=\left(m+n\right)^2-\left(p-q\right)^2\)
\(=\left(m+n-p+q\right)\left(m+n+p-q\right)\)
Bài 1 : Phân tích các đa thức sau thành nhân tử
a) m3p + m2np - m2p2 - mnp2
b) ab( m2 + n2 ) + mn( a2 + b2 )
a) \(=mp\left(m^2+mn-mp-np\right)=mp\left[m\left(m+n\right)-p\left(m+n\right)\right]=mp\left(m+n\right)\left(m-p\right)\)
b) \(=abm^2+abn^2+a^2mn+b^2mn=am\left(bm+an\right)+bn\left(bm+an\right)\)
\(=\left(bm+an\right)\left(am+bn\right)\)
phân tích đa thức thành nhân tử
\(x^2-n^2-2xy+y^2-m^2+2mn\)
Easy \(x^2-n^2-2xy+y^2-m^2+2mn\)
\(=\left(x^2-2xy+y^2\right)-\left(n^2-2mn+m^2\right)\)
\(=\left(x-y\right)^2-\left(n-m\right)^2\)
\(=\left(x-y-n+m\right)\left(x-y+n-m\right)\)
\(x^2-n^2-2xy+y^2-m^2+2mn\)
\(=\left(x^2-2xy+y^2\right)-\left(n^2-2mn+m^2\right)\)
\(=\left(x-y\right)^2-\left(n-m\right)^2\)
\(=\left(x-y-n+m\right)\left(x-y+n-m\right)\)
Mik bổ sung bài bạn nhé :
Nguồn by : Hỏa Long Natsu
Phân tích đa thức thành phân tử:
16- 9x2 + y2 8y
Viết biểu thức dưới dạng bình phương một tổng:
(n2 + 4n)(n2 + 4n + 10) + 25
Giúp với ạ
\(a,Sửa:16-9x^2+y^2-8y\\ =\left(y-4\right)^2-9x^2\\ =\left(y-3x-4\right)\left(y+3x-4\right)\\ b,=\left(n^2+4n\right)^2+10\left(n^2+4n\right)+25\\ =\left(n^2+4n+5\right)^2\)
Phân tích đa thức sau thành nhân tử: 2xy – x2 – y2 + 16
2xy – x2 – y2 + 16 (Có 2xy ; x2 ; y2, ta liên tưởng đến HĐT (1) hoặc (2))
= 16 – (x2 – 2xy + y2)
= 42 – (x – y)2 (xuất hiện hằng đẳng thức (3))
= [4 – (x – y)][4 + (x - y)]
= (4 – x + y)(4 + x – y).
1. Phân tích đa thức sau thành nhân tử ( x + 2) 2 - 16
\(\left(x+2\right)^2-16\\ \backslash=\left(x+2-4\right)\left(x+2+4\right)\\ =\left(x-2\right)\left(x+6\right)\)
( x + 2) 2 - 16
= (x+2)2 - 42
= (x+2-4) . (x+2+4)
= (x -2) . (x+6)
Bài 2 : Phân tích các đa thức sau thành nhân tử
a) (xy + ab )2 + ( ay - bx )2
b) m2( n - p ) + n2( p - m ) + p2?( m - n )
a: \(\left(xy+ab\right)^2+\left(bx-ay\right)^2\)
\(=x^2y^2+a^2b^2+x^2b^2+a^2y^2\)
\(=x^2\left(b^2+y^2\right)+a^2\left(b^2+y^2\right)\)
\(=\left(b^2+y^2\right)\left(x^2+a^2\right)\)