Cho a/b = b/c , chứng minh 2a - 3b/5b = 2c - 3d/5d
cho tỉ lệ thức : a/b=c/d. Chứng minh
a) 3a+5b/3a-5b=3c+5d/3c-5d
b) 2a+3b/2a-3b=2c+2c-3d
cho a/b=c/d, chứng minh : (2a+3b)(4c-5d)= (4a-5b)(2c+3d)
\(\frac{a}{b}=\frac{c}{d}\)
\(\left(2a+3b\right)\left(4c-5d\right)=\left(4a-5b\right)\left(2c+3d\right)\)
\(\Leftrightarrow8ac-10ad+12bc-15bd=8ac+12ad-10bc-15bd\)
\(\Leftrightarrow-10ad+12bc=12ad-10bc\)
\(\Leftrightarrow\left(-10ad+12bc\right)+\left(-12bc-12ad\right)=\left(12ad-10bc\right)+\left(-12bc-12ad\right)\)
\(\Leftrightarrow22bc=22ad\)
cho a/b = c/d chứng minh 2a-3b/4a+5b =2c-3d/4c+5d
vì a/b=c/d nên => a/c=b/d
đặt a/c=b/d =k thì => a=ck ; b= dk
thay a=ck và b=dk vào 2a-3b/4a+5b có
\(\frac{2a-3b}{4a+5b}=\frac{2ck-3dk}{4ck+5dk}=\frac{k\left(2c-3d\right)}{k\left(4c+5d\right)}=\frac{2c-3d}{4c+5d}\)
từ đay suy ra 2a-3b/4a+5b=2c-3d/4c+5d
Cho tỉ lệ thức a/b=c/d.Chứng minh
a)3a+5b/3a-5b=3c+5d/3c-5d
b) 2a + 3b/ 2a - 3b= 2c+3d/2c-3d
c)ab/cd=a^2-b^2/c^2-d^2
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh
a)\(\frac{3a+5b}{3a-5b}=\frac{3c+5d}{3c-5d}\)
b)\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\).chứng minh
a)\(\frac{3a+5b}{3a-5b}=\frac{3c+5d}{3c-5d}\)
b) \(\frac{2a+3b}{2a-3b}\)=\(\frac{2c+3d}{2c-3d}\)
Cho tỉ lệ thức \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) . Chứng minh đẳng thức sau : \(\dfrac{2a+3b}{3a-5b}\) = \(\dfrac{2c+3d}{3c-5d}\)
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=k$
$\Rightarrow a=bk, c=dk$
Khi đó:
$\frac{2a+3b}{3a-5b}=\frac{2bk+3b}{3bk-5b}=\frac{b(2k+3)}{b(3k-5)}=\frac{2k+3}{3k-5}(1)$
$\frac{2c+3d}{3c-5d}=\frac{2dk+3d}{3dk-5d}=\frac{d(2k+3)}{d(3k-5)}=\frac{2k+3}{3k-5}(2)$
Từ $(1); (2)$ ta có đpcm.
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh:
1) \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2) \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3) \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4) \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)
\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)
Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)
\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)
Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)
\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)
Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
Chứng minh : \(\dfrac{a}{b}=\dfrac{c}{d}\) nếu biết :
a,\(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
b,\(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\)
c,\(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
d,\(\dfrac{4a-3b}{a}=\dfrac{4c-3d}{c}\)
e,\(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
a) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{4a}{3b}=\frac{4c}{3d}\)
Áp dụng tỉ lệ thức ta có :
\(\frac{4a}{3b}=\frac{4c}{3d}\Rightarrow\)\(\frac{4a}{4c}=\frac{3b}{3d}\Rightarrow\frac{4a+3b}{4c+3d}=\frac{4c-3d}{4c-3d}\)
b) Có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{3b}=\frac{2c}{3d}\)
Áp dụng tỉ lệ thức ta có "
\(\frac{2a}{3b}=\frac{2c}{3d}\Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\Rightarrow\frac{2a-3b}{2c-3d}=\frac{2a3b}{2c+3d}\Rightarrow\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)
Các câu còn lại bạn làm tương tự