Những câu hỏi liên quan
qqqqqqqqq
Xem chi tiết
Kiệt Nguyễn
24 tháng 8 2020 lúc 15:42

Ta viết lại bất đẳng thức cần chứng minh thành\(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge6\)

Theo giả thiết, ta có a + b + c = 3 nên\(\sqrt{\frac{2\left(a+3\right)}{a+bc}}=\sqrt{\frac{2\left(a+a+b+c\right)}{a+bc}}=\sqrt{2\left(\frac{a+b}{a+bc}+\frac{a+c}{a+bc}\right)}\)\(\ge\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}\)(Áp dụng bất đẳng thức \(\sqrt{2\left(x+y\right)}\ge\sqrt{x}+\sqrt{y}\))

Hoàn toàn tương tự, ta được: \(\sqrt{\frac{2\left(b+3\right)}{b+ca}}\ge\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}\)\(\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\)\(\ge\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}+\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)

Áp dụng bất đẳng thức Bunyakovsky dạng phân thức, ta được: \(\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+b}{b+ca}}\ge\frac{4\sqrt{a+b}}{\sqrt{a+bc}+\sqrt{b+ca}}\ge\frac{2\sqrt{2}\sqrt{a+b}}{\sqrt{a+bc+b+ca}}=\frac{2\sqrt{2}}{\sqrt{c+1}}\)(*)

Tương tự ta có: \(\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{b+c}{c+ab}}\ge\frac{2\sqrt{2}}{\sqrt{a+1}}\)(**) ; \(\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+a}{a+bc}}\ge\frac{2\sqrt{2}}{\sqrt{b+1}}\)(***)

Cộng theo vế ba bất đẳng thức (*), (**) và (***) suy ra \(\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}+\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)\(\ge\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\)

Do đó ta có: \(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\ge6\)hay \(\frac{1}{\sqrt{c+1}}+\frac{1}{\sqrt{a+1}}+\frac{1}{\sqrt{b+1}}\ge\frac{3}{\sqrt{2}}\)

Thật vậy, áp dụng bất đẳng thức Cauchy – Schwarz ta được \(\frac{1}{\sqrt{c+1}}+\frac{1}{\sqrt{a+1}}+\frac{1}{\sqrt{b+1}}\ge\frac{9}{\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}}\ge\frac{9}{\sqrt{3\left(a+b+c+3\right)}}=\frac{3}{\sqrt{2}}\)

Vậy bất đẳng thức được chứng minh 

Đẳng thức xảy ra khi a = b = c = 1

Khách vãng lai đã xóa
Nguyễn Lê Thành Tín
Xem chi tiết
tthnew
27 tháng 10 2019 lúc 8:54

Ta có: \(VT=\sqrt{2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)+2\Sigma_{cyc}\sqrt{\left(a^2-ab+b^2\right)\left(c^2-bc+b^2\right)}}\)

\(\ge\sqrt{a^2+b^2+c^2+2\Sigma_{cyc}\sqrt{\left[\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\right]\left[\left(c-\frac{b}{2}\right)^2+\frac{3b^2}{4}\right]}}\)

\(\ge\sqrt{a^2+b^2+c^2+2\left[\Sigma_{cyc}\left(a-\frac{b}{2}\right)\left(c-\frac{b}{2}\right)+\frac{3}{4}\left(a^2+b^2+c^2\right)\right]}\) (áp dụng bđt Bunyakovski)

\(=\sqrt{\frac{5}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(a^2+b^2+c^2\right)}\)

\(=\sqrt{3\left(a^2+b^2+c^2\right)}=\sqrt{\left(a+b+c\right)^2}=3^{\left(đpcm\right)}\)

Is that true?

Mà hình như anh DƯƠNG lộn dấu khúc đầu thì phải ạ?

Khách vãng lai đã xóa
Akai Haruma
28 tháng 10 2019 lúc 19:38

Bài giải của DƯƠNG bị ngược dấu trong đánh giá cuối nên coi như sai cả bài.

Cách tiếp cận nhẹ nhàng hơn:

Ta thấy:

\(a^2-ab+b^2=\frac{1}{4}(a^2+2ab+b^2)+\frac{3}{4}(a^2-2ab+b^2)\)

\(=\frac{1}{4}(a+b)^2+\frac{3}{4}(a-b)^2\geq \frac{1}{4}(a+b)^2\)

\(\Rightarrow \sqrt{a^2-ab+b^2}\geq \frac{a+b}{2}\)

Hoàn toàn tương tự:

\(\sqrt{b^2-bc+c^2}\geq \frac{b+c}{2}; \sqrt{c^2-ca+a^2}\geq \frac{c+a}{2}\)

Cộng theo vế các BĐT trên thu được:

\(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\geq a+b+c=3\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

Khách vãng lai đã xóa
DƯƠNG PHAN KHÁNH DƯƠNG
17 tháng 10 2018 lúc 18:35

Ta có BĐT sau : \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=3\)

Trở lại bài toán ta có :

\(\left(a-b\right)^2\ge0\Rightarrow a^2-2ab+b^2\ge0\Rightarrow a^2-ab+b^2\ge ab\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{ab}\)

Tương tự như trên ta lại có :

\(\sqrt{b^2-bc+c^2}\ge\sqrt{bc}\)

\(\sqrt{c^2-2ca+a^2}\ge\sqrt{ca}\)

Cộng vế theo vế :

\(\Rightarrow\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=3\)

\(\RightarrowĐPCM\) . Dấu \("="\Leftrightarrow a=b=c=1\)

Phạm Đức Dũng
Xem chi tiết
Nguyễn Ý Nhi
3 tháng 2 2020 lúc 20:58

1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)

\(=ac+bc+c^2+ab\)

\(=a\left(b+c\right)+c\left(b+c\right)\)

\(=\left(b+c\right)\left(a+b\right)\)

CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)

\(b+ca=\left(b+c\right)\left(a+b\right)\)

Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)

CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)

\(\Rightarrow P\le\frac{1}{2}.3\)

\(\Rightarrow P\le\frac{3}{2}\)

Dấu"="xảy ra \(\Leftrightarrow a=b=c\)

Vậy /...

Khách vãng lai đã xóa
Phan Gia Huy
3 tháng 2 2020 lúc 21:37

\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)

\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)

Tương tự rồi cộng lại:

\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)

Dấu "=" xảy ra tại \(a=b=c=1\)

Khách vãng lai đã xóa
Kudo Shinichi
4 tháng 2 2020 lúc 15:00

Bài 1 : 

\(P=\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)

\(P=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}+\sqrt{\frac{bc}{a\left(a+b+c\right)+bc}}\)

\(+\sqrt{\frac{ca}{b\left(a+b+c\right)+ca}}\)

\(P=\sqrt{\frac{ab}{ac+bc+c^2+ab}}+\sqrt{\frac{bc}{a^2+ab+ac+bc}}\)

\(+\sqrt{\frac{ca}{ab+b^2+bc+ca}}\)

\(P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)

Áp dụng bất đẳng thức Cauchy cho 2 bô só thực không âm

\(\Rightarrow\hept{\begin{cases}\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{a}{a+c}+\frac{b}{b+c}}{2}\\\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\\\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\le\frac{\frac{a}{a+b}+\frac{c}{b+c}}{2}\end{cases}}\)

\(\Rightarrow VT\)

\(\le\frac{\left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\left(\frac{b}{b+c}+\frac{c}{b+c}\right)+\left(\frac{b}{a+b}+\frac{a}{a+b}\right)}{2}\)

\(\Rightarrow VT\le\frac{\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{a+b}{a+b}}{2}=\frac{3}{2}\)

\(\Rightarrow P\le\frac{3}{2}\)

Vậy \(P_{max}=\frac{3}{2}\)

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)

Chúc bạn học tốt !!!

Khách vãng lai đã xóa
Daffodil Clover
Xem chi tiết
tth_new
15 tháng 5 2019 lúc 10:13

Cân bằng hệ số:

Giả sư: \(2a^2+ab+2b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\) (ta đi tìm x ; y)

\(=xa^2+x.2ab+xb^2+ya^2-y.2ab+yb^2\)

\(=\left(x+y\right)a^2+2\left(x-y\right)ab+\left(x+y\right)b^2\)

Đồng nhất hệ số ta được: \(\hept{\begin{cases}x+y=2\\2\left(x-y\right)=1\end{cases}\Leftrightarrow}\hept{\begin{cases}2x+2y=4\\2x-2y=1\end{cases}}\Leftrightarrow4x=5\Leftrightarrow x=\frac{5}{4}\Leftrightarrow y=\frac{3}{4}\)

Do vậy: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\)

Tương tự với hai BĐT còn lại,thay vào,thu gọn và đặt thừa số chung,ta được:

\(VT\ge\sqrt{\frac{5}{4}}.2.\left(a+b+c\right)=\sqrt{\frac{5}{4}}.2.3=3\sqrt{5}\) (đpcm)

Dấu "=" xảy ra khi a = b =c = 1

Đặng Viết Thái
14 tháng 5 2019 lúc 20:24

Hoa 

cả

mắt

chuẩn men

Nguyễn An
Xem chi tiết
卡拉多克
Xem chi tiết
Tùng Nguyễn
Xem chi tiết
friknob
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 8 2021 lúc 21:49

Áp dụng  \(x^2+y^2+z^2\ge xy+yz+zx\) và \(x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^2\)

\(N\ge\dfrac{a^2b}{c}+\dfrac{b^2c}{a}+\dfrac{c^2a}{b}\ge\dfrac{1}{3}\left(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}\right)^2=3\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Tiến Nguyễn Minh
Xem chi tiết
Copxki Minh
23 tháng 11 2020 lúc 23:52

1)

Ta có: \(M=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\sqrt{3\left(a+b\right)\left(a+b+4c\right)}}\ge\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\frac{3\left(a+b\right)+\left(a+b+4c\right)}{2}}=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{2\left(a+b+c\right)}=3\sqrt{3}\)

Dấu "=" xảy ra khi a=b=c

Khách vãng lai đã xóa
Copxki Minh
24 tháng 11 2020 lúc 9:53

2)

\(\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}=\Sigma_{cyc}\frac{2a}{\sqrt[3]{2a\left(ab+1\right)^2}}\ge\Sigma_{cyc}\frac{2a}{\frac{2a+\left(ab+1\right)+\left(ab+1\right)}{3}}=3\Sigma_{cyc}\frac{a}{ab+a+1}\)

Ta có bổ đề: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\left(abc=1\right)\)

\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}\ge3\)

Khách vãng lai đã xóa