Giải phương trình:
\(2\sqrt{x+3}=9x^2-x-4\)
Giúp mk hộ ạ :)
Giải phương trình: \(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
Các cậu giúp hộ ạ!!!
ĐKXĐ: \(0\le x\le\frac{3}{2}\)
ĐẶT: \(\hept{\begin{cases}\sqrt{x}=a\\\sqrt{3-2x}=b\end{cases}\Rightarrow}a;b\ge0\)
=> \(\hept{\begin{cases}x=a^2\\3-2x=b^2\end{cases}}\)
=> \(2a^2+b^2=3\)
KHI ĐÓ PT BAN ĐẦU SẼ ĐƯỢC: \(9+3ab=7a+5b\)
<=> \(6+3+3ab=7a+5b\) (*)
THAY \(2a^2+b^2=3\)vào PT (*) TA SẼ ĐƯỢC:
=> \(2a^2+b^2+3ab+6=2\left(2a+b\right)+3\left(a+b\right)\)
<=> \(\left(a+b\right)\left(2a+b\right)+6=2\left(2a+b\right)+3\left(a+b\right)\)
<=> \(\left(a+b-2\right)\left(2a+b-3\right)=0\)
<=> \(\orbr{\begin{cases}a+b=2\\2a+b=3\end{cases}}\)
TH1: \(a+b=2\Rightarrow\sqrt{x}+\sqrt{3-2x}=2\)
=> \(x+3-2x+2\sqrt{x\left(3-2x\right)}=4\)
<=> \(2\sqrt{3x-2x^2}=x+1\)
<=> \(4\left(3x-2x^2\right)=x^2+2x+1\)
<=> \(12x-8x^2=x^2+2x+1\)
<=> \(9x^2-10x+1=0\)
<=> \(\left(x-1\right)\left(9x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=1\\x=\frac{1}{9}\end{cases}}\)
=> TA THẤY CÁC GIÁ TRỊ x đều TMĐK.
BẠN TỰ XÉT NỐT TRƯỜNG HỢP 2: \(2a+b=3\Rightarrow2\sqrt{x}+\sqrt{3-2x}=3\) nha
đạt
\(\hept{\begin{cases}\sqrt{a}=f\\\sqrt{3-2a}=h\end{cases}}\Rightarrow3ab+9=7f+5h\)
Giải phương trình:
\(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=3-9x\)
Mình cần gấp, mong mọi người giúp mình với ạ. Cả mạng sống mình thu bé lại bàng một bài toán T_T.
Giải ra từng bước kĩ kĩ tí nha m.n. Cảm ơn nhiều.
Giải phương trình sau
(x-5)2+(x+3)2=2(x-4)(x+4)-5x+7Chúc
Giúp mk vơi. Cảm ơn nhiu, ai trả lời nhanh nhất mk tick ủng hộ bạn đo
(x-5)^2+(x+3)^2 = x^2 -10x + 25 + x^2 + 6x +9= 2(x^2 - 16) -5x +7 = 2(x-4)(x+4) - 5x + 7
Bài 1 : giải các phương trình
a, 5x+35=0 b, 9x-3=0
c, 24-8x=0 d,-6x+16=0
Bài 2 : giải các phương trình
a, 7x-5=13-5x b, 13-7x=4x-20
c, 2-3x=5x+10 d, 11-9x=3-7x
Bài 3 : tìm giá trị của m sao cho phương trình sau nhận x=-3 làm nghiệm
4x+3m=3-2x
Bài 4: cho hai phương trình ẩn x :
3x+3=0 (1)
5-kx=7 (2)
tìm giá trị của k sao cho nghiệm của phương trình 1 là nghiệm của phương trình 2
Mn Giúp Mk vs Ạ
giải phương trình sau . cần giúp đỡ khẩn cấp ạ
\(\dfrac{2}{x-\sqrt{x}+2}+\dfrac{1}{x-2\sqrt{x}+2_{ }}=\dfrac{2}{\sqrt{x}}\)
Giải phương trình: \(\sqrt{x-2\sqrt{x-3}-2}=1\)
các cậu giúp mk vs kìa...
\(\sqrt{x-2\sqrt{x-3}-2}=1\)
=> \(x-2\sqrt{x-3}=1^2=1\)
=> \(-2\sqrt{x-3}=1-x+2\)
=> \(-2\sqrt{x-3}=3-x\)
=> \(\left(-2\sqrt{x-3}\right)^2=\left(3-x\right)^2\)
=> \(4\left(x-3\right)=9-6x+x^2\)
=> \(4x-12=9-6x+x^2\)
=> \(4x-12-9+6x-x^2=0\)
=> \(10x-21-x^2=0\)
Mình xin hết ( biết có vậy )
\(\sqrt{x-2\sqrt{x-3}+2}=1\)
\(\Leftrightarrow\sqrt{x-3-2\sqrt{x-3}+1}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-3}-1\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-3}-1\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}-1=1\\\sqrt{x-3}-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)
Vậy....
\(\sqrt{x-2\sqrt{x-3}-2}=1\\ \Leftrightarrow\sqrt{x-3-2\sqrt{x-3}+1}=1\\ \Leftrightarrow\sqrt{\left(\sqrt{x-3}-1\right)^2}=1\\ \Leftrightarrow\sqrt{x-3}-1=1\\ \Leftrightarrow\sqrt{x-3}=2\\ \Leftrightarrow x-3=4\\ \Leftrightarrow x=7\)
Giải phương trình :
a) \(\sqrt{9x+27}-\dfrac{1}{4}\sqrt{16x+48}+\sqrt{x+3}=6\)
b) \(2+\sqrt{2x-1}=x\)
b. 2 + \(\sqrt{2x-1}=x\) ĐKXĐ: \(x\ge0,5\)
<=> \(\sqrt{2x-1}\) = x - 2
<=> 2x - 1 = (x - 2)2
<=> 2x - 1 = x2 - 4x + 4
<=> -x2 + 2x + 4x - 4 - 1 = 0
<=> -x2 + 6x - 5 = 0
<=> -x2 + 5x + x - 5 = 0
<=> -(-x2 + 5x + x - 5) = 0
<=> x2 - 5x - x + 5 = 0
<=> x(x - 5) - (x - 5) = 0
<=> (x - 1)(x - 5) = 0
<=> \(\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
Giải phương trình :
a, x^2 - 2x = 0
b, x^2 - 7x - 10 = 0
Giúp tớ với tớ đang cần gấp ạ~~
Thanks nhìu ạ~~
\(a,x^2-2x=0< =>x\left(x-2\right)=0< =>\orbr{\begin{cases}x=0\\x-2=0\end{cases}}< =>\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy nghiệm của phương trình là.....
\(b,x^2-7x-10=0< =>x^2-2x-5x-10=0< =>x\left(x-2\right)-5\left(x+2\right)=0\)
bn xem lại đề câu b, chút
Giải phương trình:
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)
Mn ơi giúp mk nha, mk đang cần gấp lắm...
TA CÓ:
\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1+6\sqrt{x-1}+9}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=5\)
\(\Leftrightarrow\sqrt{x-1}-2+\sqrt{x-1}-3=5\Leftrightarrow2\sqrt{x-1}=10\Leftrightarrow\sqrt{x-1}=5\)
\(\Leftrightarrow x-1=25\Leftrightarrow x=26\)
ĐKXĐ: \(x\ge1\)
PT (=) \(\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}=5\)
(=) \(\sqrt{x-1}-2+\sqrt{x-1}+3=5\) (=) \(2\sqrt{x-1}=4\)(=) \(\sqrt{x-1}=2\)(=) X = 5 (nhận)