Tìm GTLN, GTNN của hàm số sau
a) y = 12sinx - 5cosx
b) y = 3cosx-4sinx+5
Tìm tập giá trị T của hàm số y=12sinx-5cosx?
A. T=[-1;1]
B. T=[-7;7]
C. T=[-13;13]
D.T=[-17;17]
Tìm GTLN và GTNN của hàm số y = √3cosx - sinx
\(y=\sqrt{3}cosx-sinx=2\left(\dfrac{\sqrt{3}}{2}cosx-\dfrac{1}{2}sinx\right)=2cos\left(x+\dfrac{\pi}{6}\right)\)
Vì \(cos\left(x+\dfrac{\pi}{6}\right)\in\left[-1;1\right]\Rightarrow y=\sqrt{3}cosx-sinx\in\left[-2;2\right]\)
\(\Rightarrow y_{min}=-2\Leftrightarrow cos\left(x+\dfrac{\pi}{6}\right)=-1\Leftrightarrow x+\dfrac{\pi}{6}=\pi+k2\pi\Leftrightarrow x=\dfrac{5\pi}{6}+k2\pi\)
\(y_{max}=2\Leftrightarrow cos\left(x+\dfrac{\pi}{6}\right)=1\Leftrightarrow x+\dfrac{\pi}{6}=k2\pi\Leftrightarrow x=-\dfrac{\pi}{6}+k2\pi\)
Tìm GTLN,GTNN của hàm số:
a, \(y=3cosx-1\)
b, \(y=5+2sinx\)
c,\(y=\sqrt{3+cos2x}\)
d,\(y=\sqrt{5sinx-1}+2\)
a.\(-1\le cosx\le1\Rightarrow-4\le y=3cosx-1\le2\)
b.-1 \(\le sinx\le1\)\(\Rightarrow3\le y=5+2sinx\le7\)
c.\(\sqrt{3-1}\le\sqrt{3+cos2x}\le\sqrt{3+1}\Rightarrow\sqrt{2}\le y\le2\)
d.\(y=\sqrt{5sinx-1}+2\le\sqrt{5.1-1}+2=4\)
\(y=\sqrt{5sinx-1}+2\ge2\) . " = " \(\Leftrightarrow sinx=\dfrac{1}{5}\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(\dfrac{1}{5}\right)+2k\pi\\x=\pi-arcsin\left(\dfrac{1}{5}\right)+2k\pi\end{matrix}\right.\) ( k thuộc Z )
Tìm GTLN. gtnn của hàm số sau y=4sin3x- 3cosx+1.
Cảm ơn các bạn nhiều'
Tìm GTLN GTNN của hàm số lượng giác Y= sinx/2 + 3cosx
`y=1/2 sinx +3cosx`
`-\sqrt( (1/2)^2+3^2) <= y <= \sqrt( (1/2)^2+3^2)`
`<=> -\sqrt37/2 <= y <= \sqrt37/2`
`=> y_(min) = -\sqrt37/2`
`y_(max) = \sqrt37/2`.
Tìm GTNN, GTLN của hàm số y= 2sin2x + 3cosx -1 trên đoạn \(\left[\dfrac{-\pi}{3};\dfrac{2\pi}{3}\right]\)
Bài 1. Tìm chu kỳ của: y = sin x - sin x/2 + sin x/3 - sin x/4 + .... + sin x/9 - sin x/10
Bài 2. Tìm GTLN, GTNN của:
a) y = 6cos2x + cos22x
b) y = ( 4sinx - 3cosx )2 - 4 ( 4sinx - 3cosx ) + 1
1.
Các hàm \(sinx;sin\frac{x}{2};sin\frac{x}{3};...;sin\frac{x}{10}\) có chu kì lần lượt là \(2\pi;4\pi;6\pi;...;20\pi\)
\(\Rightarrow\) Chu kì của hàm đã cho là \(BCNN\left(2\pi;4\pi;...;20\pi\right)=15120\pi\)
2.
a.
\(y=cos^22x+3cos2x+3\)
\(y=\left(cos2x+1\right)\left(cos2x+2\right)+1\ge1\Rightarrow y_{min}=1\) khi \(cos2x=-1\)
\(y=\left(cos2x-1\right)\left(cos2x+4\right)+7\le7\Rightarrow y_{max}=7\) khi \(cos2x=1\)
b.
Đặt \(a=4sinx-3cosx\Rightarrow a^2\le\left(4^2+\left(-3\right)^2\right)\left(sin^2x+cos^2x\right)=25\)
\(\Rightarrow-5\le a\le5\)
\(y=a^2-4a+1\) với \(a\in\left[-5;5\right]\)
\(y=\left(a-2\right)^2-3\ge-3\Rightarrow y_{min}=-3\) khi \(a=2\)
\(y=\left(a-9\right)\left(a+5\right)+46\le46\Rightarrow y_{max}=46\) khi \(a=-5\)
Tìm GTNN,GTLN của y=3 -4sinx
\(sin\in\left[-1;1\right]\Rightarrow y=3-4sinx\in\left[-1;7\right]\)
\(\Rightarrow y_{min}=-1\Leftrightarrow sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)
\(y_{max}=7\Leftrightarrow sinx=-1\Leftrightarrow x=-\dfrac{\pi}{2}+k2\pi\)