Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ỉn2k8>.
Xem chi tiết
Nguyễn Ngọc Lộc
29 tháng 6 2021 lúc 8:26

Bài 2 :

\(A=4x^2-2.2x.2+4+1\)

\(=\left(2x-2\right)^2+1\)

Thấy : \(\left(2x-2\right)^2\ge0\)

\(A=\left(2x-2\right)^2+1\ge1\)

Vậy \(MinA=1\Leftrightarrow x=1\)

\(B=\left(5x\right)^2-2.5x.1+1-4\)

\(=\left(5x-1\right)^2-4\)

Thấy : \(\left(5x-1\right)^2\ge0\)

\(\Rightarrow B=\left(5x-1\right)^2-4\ge-4\)

Vậy \(MinB=-4\Leftrightarrow x=\dfrac{1}{5}\)

\(C=\left(7x\right)^2-2.7x.2+4-5\)

\(=\left(7x-2\right)^2-5\)

Thấy : \(\left(7x-2\right)^2\ge0\)

\(\Rightarrow C=\left(7x-2\right)^2-5\ge-5\)

Vậy \(MinC=-5\Leftrightarrow x=\dfrac{2}{7}\)

missing you =
29 tháng 6 2021 lúc 8:33

\(1.\)

\(A=-x^2-10x+1=-\left(x^2+10x-1\right)\)

\(=-\left(x^2+2.5x+5^2-5^2-1\right)=-\left[\left(x+5\right)^2-26\right]\)

\(=-\left(x+5\right)^2+26\le26\) dấu "=" xảy ra<=>x=-5

\(B=-4x^2-6x-5=-4\left(x^2+\dfrac{6}{4}x+\dfrac{5}{4}\right)\)

\(=-4\left(x^2+2.\dfrac{3}{4}x+\dfrac{9}{16}+\dfrac{11}{16}\right)\)\(=-4\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{6}\right]\le-\dfrac{11}{4}\)

\(C=-16x^2+8x-1=-16\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)

\(=-16\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)=-16\left(x-\dfrac{1}{4}\right)^2\le0\)

dấu"=" xảy ra<=>x=1/4

 

 

 

Hai ne
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 20:13

Bài 1:

a: \(M=x^2-10x+3\)

\(=x^2-10x+25-22\)

\(=\left(x^2-10x+25\right)-22\)

\(=\left(x-5\right)^2-22>=-22\forall x\)

Dấu '=' xảy ra khi x-5=0

=>x=5

b: \(N=x^2-x+2\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi x-1/2=0

=>x=1/2

c: \(P=3x^2-12x\)

\(=3\left(x^2-4x\right)\)

\(=3\left(x^2-4x+4-4\right)\)

\(=3\left(x-2\right)^2-12>=-12\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

Mona Megistus
Xem chi tiết
Lấp La Lấp Lánh
1 tháng 9 2021 lúc 21:53

a) \(2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

\(ĐTXR\Leftrightarrow x=\dfrac{1}{4}\)

b) \(5x-x^2+4=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\)

\(ĐTXR\Leftrightarrow x=\dfrac{5}{2}\)

c) \(x^2+5y^2-2xy+4y+3=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

\(ĐTXR\Leftrightarrow\)\(x=y=-\dfrac{1}{2}\)

Nguyễn Lê Phước Thịnh
1 tháng 9 2021 lúc 21:54

b: ta có: \(-x^2+5x+4\)

\(=-\left(x^2-5x-4\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{41}{4}\right)\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

Bảo Trâm Vương Trần
1 tháng 9 2021 lúc 21:55

undefined

TPBank
Xem chi tiết
Akai Haruma
17 tháng 9 2021 lúc 8:23

a.

$A=x^2-8x+5=(x^2-8x+16)-11=(x-4)^2-11$

Do $(x-4)^2\geq 0, \forall x\in\mathbb{R}$

$\Rightarrow A=(x-4)^2-11\geq 0-11=-11$

Vậy $A_{\min}=-11$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

b.

$B=2x^2+6x-4=2(x^2+3x+1,5^2)-\frac{17}{2}=2(x+1,5)^2-\frac{17}{2}$

$\geq 2.0-\frac{17}{2}=-\frac{17}{2}$

Vậy $B_{\min}=\frac{-17}{2}$ tại $x=-1,5$

Akai Haruma
17 tháng 9 2021 lúc 8:24

c. Biểu thức này không có min, chỉ có max

d.

$D=x^2-x+1=(x^2-2.\frac{1}{2}.x+\frac{1}{2^2})+\frac{3}{4}$
$=(x-\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}$

Vậy $D_{\min}=\frac{3}{4}$. Giá trị này đạt tại $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$

Nguyễn Thị Chuyên
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 9 2021 lúc 18:03

\(1,\\ a,A=4x^2\left(-3x^2+1\right)+6x^2\left(2x^2-1\right)+x^2\\ A=-12x^4+4x^2+12x^2-6x^2+x^2=-x^2=-\left(-1\right)^2=-1\\ b,B=x^2\left(-2y^3-2y^2+1\right)-2y^2\left(x^2y+x^2\right)\\ B=-2x^2y^3-2x^2y^2+x^2-2x^2y^3-2x^2y^2\\ B=-4x^2y^3-4x^2y^2+x^2\\ B=-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^3-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^2+\left(0,5\right)^2\\ B=\dfrac{1}{8}-\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{8}\)

Nguyễn Hoàng Minh
9 tháng 9 2021 lúc 18:06

\(2,\\ a,\Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ b,\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3=8=-2^3\\ \Leftrightarrow x=2\\ c,\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^2=15\\ \Leftrightarrow16x^3-8x^2-x^3+8x^2=15\\ \Leftrightarrow15x^3=15\\ \Leftrightarrow x^3=1\Leftrightarrow x=1\)

 

Nguyễn Hoàng Minh
9 tháng 9 2021 lúc 18:08

\(P=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\\ P=2x^2+x-x^3-2x^2+x^3-x+3\\ P=3\left(đfcm\right)\)

Dũng Quang
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2023 lúc 10:47

loading...  loading...  

Tớ Chưa Bồ
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 0:38

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 0:39

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

Tạ Minh Việt
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 3 2022 lúc 15:12

a: \(A=-5x^3+9x^3-2x^2-2x^2+x-x+1\)

\(=4x^3-4x^2+1\)

\(B=-4x^3+2x^3-2x^2+2x^2+6x-9x-2\)

\(=-2x^3-3x-2\)

\(C=x^3-6x^2+2x-4\)

b: \(A\left(x\right)+B\left(x\right)-C\left(x\right)\)

\(=4x^3-4x^2+1-2x^3-3x-2+x^3-6x^2+2x-4\)

\(=3x^3-10x^2-x-4\)

ngọc hân
Xem chi tiết
Nguyễn Huy Tú
18 tháng 7 2021 lúc 15:43

undefinedundefined

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:20

Bài 6:

a) Ta có: \(A=-x^2+6x-11\)

\(=-\left(x^2-6x+11\right)\)

\(=-\left(x-3\right)^2-2\le-2\forall x\)

Dấu '=' xảy ra khi x=3

b) Ta có: \(B=-x^2-8x+5\)

\(=-\left(x^2+8x-5\right)\)

\(=-\left(x^2+8x+16-21\right)\)

\(=-\left(x+4\right)^2+21\le21\forall x\)

Dấu '=' xảy ra khi x=-4

c) Ta có: \(C=-x^2+4x+1\)

\(=-\left(x^2-4x-1\right)\)

\(=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:21

Bài 7:

a) Ta có: \(x^2-6x+11\)

\(=x^2-6x+9+2\)

\(=\left(x-3\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=3

tanqr
Xem chi tiết
Lấp La Lấp Lánh
16 tháng 10 2021 lúc 10:23

\(A=x^2-6x+15=\left(x^2-6x+9\right)+6\)

\(=\left(x-3\right)^2+6\ge6\)

\(minA=6\Leftrightarrow x=3\)

Thị Thư Nguyễn
16 tháng 10 2021 lúc 10:23

A=x²-2x3+3²+6

A=(x-3)²+6

Vì (x-3)² luôn > hoặc = 0 với mọi x

=> (x-3)²+6 > hoặc = 6

Vậy GTNN = 6 

Dấu "=" xảy ra khi x-3=0

X=3

OH-YEAH^^
16 tháng 10 2021 lúc 10:24

\(A=x^2-6x+15\)

\(\Rightarrow A=x^2-6x+9+6\)

\(\Rightarrow A=\left(x^2-6x+9\right)+6\)

\(\Rightarrow A=\left(x-3\right)^2+6\)

Ta có: \(\left(x-3\right)^2+6\ge6\) với mọi x

Dấu ''='' xảy ra khi \(x=3\)