1)z/72=y/15;x/60=z/96 biết rằng 3y-4z+5x=-168
2)4x/5=5y/6;3y/8=2z/7 biết rằng 3z+4y-10x=-238
3)3x+18/4=5y-3x-2/7x=-5y-16/6
4)-5x+2y-2/12y=2y+1/5=5x+3/17
Mn giúp e nhanh với ạ e cần gấp cảm ơn mn nhìu😁
Tìm số nguyên x,y,z :
a) 5/12 = x/72 b) x+3/15 = -1/3 c) 12/16 = -x/4 = 21/y = -z/-80
a: x/72=5/12
=>x/72=30/72
hay x=30
b: x+3/15=-1/3
=>x=-1/3-1/5=-8/15
c: =>-x/4=21/y=z/80=3/4
=>x=-3; y=28; z=60
cho các số x,y,z thỏa mãn x+y+z=15 và xy+yz+xz=72. chứng minh 3<=x,y,z<=7
Cho các số x,y ,z thỏa mãn x+y+z=15 và xy+ yz+xz= 72 . chứng minh 3<=x,y ,z<=7
Cho các số x;y;z thỏa mãn :x+y+z=15 va xy+yz+xz=72.Chứng minh rằng:\(3\le x;y;z\le7\)
1.Tìm số nguyên x,y,z :
a) 5/12 = x/72 b) x+3/15 = -1/3 c) 12/16 = -x/4 = 21/y = -z/-80
2.Rút gọn :
a)990/2610 b) B = 71.52+53/530.71-180
Tìm x,y,z thỏa mãn:
\(\dfrac{x+2}{3}\)=\(\dfrac{y-5}{-4}\)=\(\dfrac{z+1}{5}\); 2x-3y+z=72 giúp tui với huhu
\(\dfrac{x+2}{3}=\dfrac{y-5}{-4}=\dfrac{z+1}{5}\Rightarrow\dfrac{2x+4}{6}=\dfrac{3y-15}{-12}=\dfrac{z+1}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x+4}{6}=\dfrac{3y-15}{-12}=\dfrac{z+1}{5}=\dfrac{2x+4-3y+15+z+1}{6-\left(-12\right)+5}=\dfrac{\left(2x-3y+z\right)+\left(4+15+1\right)}{23}=\dfrac{72+20}{23}=\dfrac{92}{23}=4\)
\(\dfrac{x+2}{3}=4\Rightarrow x+2=12\Rightarrow x=10\\ \dfrac{y-5}{-4}=4\Rightarrow y-5=-16\Rightarrow y=-11\\ \dfrac{z+1}{5}=4\Rightarrow z+1=20\Rightarrow z=19\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+2}{3}=\dfrac{y-5}{-4}=\dfrac{z+1}{5}=\dfrac{2x-3y+z+4+15+1}{2\cdot3-3\cdot\left(-4\right)+5}=\dfrac{92}{23}=4\)
Do đó: x=10; y=-11; z=4
\(\dfrac{x+2}{3}=\dfrac{y-5}{-4}=\dfrac{z+1}{5}\text{ và }2x-3y+z=72\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau:}\)
\(\dfrac{x+2}{3}=\dfrac{y-5}{-4}=\dfrac{z+1}{5}=\dfrac{2\left(x+2\right)-3\left(y-5\right)+z+1}{2.3-3.\left(-4\right)+5}=\dfrac{92}{23}=4\)
\(\Rightarrow\dfrac{x+2}{3}=4\Rightarrow x+2=12\Rightarrow x=10\)
\(\dfrac{y-5}{-4}=4\Rightarrow y-5=-16\Rightarrow y=-11\)
\(\dfrac{z+1}{5}=4\Rightarrow z+1=20\Rightarrow z=19\)
Tìm x,y,z thuộc Q
a, |x+195 |+|y+18901975 |+|z+2004|
b, |x+92 |+|y+43 |+|z+72 |≤0
c,|x+34 |+|y−15 |+|x+y+z|=0
d, |x+34 |+|y−25 |+|z+12 |≤0
a) Vì : \(\left|x+\frac{19}{5}\right|\ge0\forall x\in R\)
\(\left|y+\frac{1890}{1975}\right|\ge0\forall y\in R\)
\(\left|z-2004\right|\ge0\forall z\in R\)
\(\Rightarrow\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x,y,z\in R\)
Dấu''='' xảy ra khi và chỉ khi \(\hept{\begin{cases}x=\frac{-19}{5}\\y=\frac{-1890}{1975}\\z=2004\end{cases}}\)
b,\(\left|x+\frac{9}{2}\right|+\left|y+\frac{4}{3}\right|+\left|z+\frac{7}{2}\right|\le0\)
Ta có:\(\left|x+\frac{9}{2}\right|\ge0\forall x\)
\( \left|y+\frac{4}{3}\right|\ge0\forall y\)
\(\left|z+\frac{7}{2}\right|\ge0\forall z\)
\(\Rightarrow\left|x+\frac{9}{2}\right|+\left|y+\frac{4}{3}\right|+\left|z+\frac{7}{2}\right|\ge0\forall x,y,z\)
Mà \(\left|x+\frac{9}{2}\right|+\left|y+\frac{4}{3}\right|+\left|z+\frac{7}{2}\right|\le0\)
\(\Rightarrow\left|x+\frac{9}{2}\right|+\left|y+\frac{4}{3}\right|+\left|z+\frac{7}{2}\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x+\frac{9}{2}\right|=0\\\left|y+\frac{4}{3}\right|=0\\\left|z+\frac{7}{2}\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x+\frac{9}{2}=0\\y+\frac{4}{3}=0\\z+\frac{7}{2}=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{9}{2}\\y=-\frac{4}{3}\\z=-\frac{7}{2}\end{cases}}}\)
c,\(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)
Ta có:\(\left|x+\frac{3}{4}\right|\ge0\forall x\)
\(\left|y-\frac{1}{5}\right|\ge0\forall y\)
\(\left|x+y+z\right|\ge0\forall x,y,z\)
\(\Rightarrow\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x,y,z\)
Mà \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x+\frac{3}{4}\right|=0\\\left|y-\frac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x+\frac{3}{4}=0\\y-\frac{1}{5}=0\\x+y+z=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{3}{4}\\y=\frac{1}{5}\\z=\frac{11}{20}\end{cases}}}\)
/2x-3y/+/3y-4z/+/xyz-72/=0 tìm xyz
/x-y/+/y-z/+/x-z/=200(x+y+z)+1giúp em với ạ
Cho P : x + y - z + 1 = 0 ; d : x + 3 1 = y + 5 - 1 = z - 7 2 . Gọi d ' là hình chiếu vuông góc của (d) xuống (P); xác định vectơ chỉ phương của d'.
\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y}=\frac{1}{72}\\\frac{1}{x}+\frac{1}{z}=\frac{1}{63}\\\frac{1}{y}+\frac{1}{z}=\frac{1}{56}\end{matrix}\right.\)
Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)
\(hpt\Leftrightarrow\left\{{}\begin{matrix}a+b=\frac{1}{72}\\a+c=\frac{1}{63}\\b+c=\frac{1}{56}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=\frac{1}{72}\\a-b=\frac{1}{63}-\frac{1}{56}\\b+c=\frac{1}{56}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{72}-b\\2b=\frac{1}{72}+\frac{1}{504}\\c=\frac{1}{56}-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{72}-b\\b=\frac{\frac{1}{72}+\frac{1}{504}}{2}=\frac{1}{126}\\c=\frac{1}{56}-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{72}-\frac{1}{126}=\frac{1}{168}\\b=\frac{1}{126}\\c=\frac{1}{56}-\frac{1}{126}=\frac{5}{504}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=168\\y=126\\z=100,8\end{matrix}\right.\)