cos4x=8\(^{cos^4x-8cos^2x+1}\)
1. sin^8(x) - cos^8(x) - 4sin^6(x) + 6sin^4(x) - 4sin^2(x) = 1
2. sin6x+sin4x+sin2x/1+cos2x+cos4x = 2sin2x
3. 1+sin2x /cosx+sinx - 1-tan^2(x/2)/1+tan^2(x/2) = sinx
4. cos4x + 4cos2x + 3 = 8cos^4(x)
5. 1+cosx+cos2x+cos3x/ 2cos^2(x)+cosx-1 = 2cosx
1. sin^8(x) - cos^8(x) - 4sin^6(x) + 6sin^4(x) - 4sin^2(x) = 1
2. sin6x+sin4x+sin2x/1+cos2x+cos4x = 2sin2x
3. 1+sin2x /cosx+sinx - 1-tan^2(x/2)/1+tan^2(x/2) = sinx
4. cos4x + 4cos2x + 3 = 8cos^4(x)
5. 1+cosx+cos2x+cos3x/ 2cos^2(x)+cosx-1 = 2cosx
\(sin^8x-cos^8x-4sin^6x+6sin^4x-4sin^2x\)
\(=sin^8x-\left(1-sin^2x\right)^4-4sin^6x+6sin^4x-4sin^2x\)
\(=sin^8x-\left(1-4sin^2x+6sin^4x-4sin^6x+sin^8x\right)-4sin^6x+6sin^4x-4sin^2x\)\(=-1\) (bạn chép nhầm đề)
b/ \(\frac{sin6x+sin2x+sin4x}{1+cos2x+cos4x}=\frac{2sin4x.cos2x+sin4x}{1+cos2x+2cos^22x-1}=\frac{sin4x\left(2cos2x+1\right)}{cos2x\left(2cos2x+1\right)}=\frac{sin4x}{cos2x}=\frac{2sin2x.cos2x}{cos2x}=2sin2x\)
c/ \(\frac{1+sin2x}{cosx+sinx}-\frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}=\frac{sin^2x+cos^2x+2sinx.cosx}{cosx+sinx}-\left(1-tan^2\frac{x}{2}\right)cos^2\frac{x}{2}\)
\(=\frac{\left(sinx+cosx\right)^2}{sinx+cosx}-\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)=sinx+cosx-cosx=sinx\)
d/ \(cos4x+4cos2x+3=2cos^22x-1+4cos2x+3\)
\(=2\left(cos^22x+2cos2x+1\right)=2\left(cos2x+1\right)^2=2\left(2cos^2x-1+1\right)^2=8cos^4x\)
e/
a)sin^4\(\frac{x}{3}\) +cos^4\(\frac{x}{3}\)=\(\frac{5}{8}\)
b)4(sin^4x+cos^4x)+\(\sqrt{3}\)sin4x=2
c)cos^4x+sin^6x=cos2x
d)cos^6x+sin^6x=cos4x
2cos^2x+2cos^2x+4cos^3(2x)-3cos2x=5
a/
\(\Leftrightarrow\left(sin^2\frac{x}{3}+cos^2\frac{x}{3}\right)^2-2sin^2\frac{x}{3}.cos^2\frac{x}{3}=\frac{5}{8}\)
\(\Leftrightarrow1-\frac{1}{2}sin^2\frac{2x}{3}=\frac{5}{8}\)
\(\Leftrightarrow1-\frac{1}{4}\left(1-cos\frac{4x}{3}\right)=\frac{5}{8}\)
\(\Leftrightarrow cos\frac{4x}{3}=-\frac{1}{2}\)
\(\Leftrightarrow\frac{4x}{3}=\pm\frac{2\pi}{3}+k2\pi\)
\(\Leftrightarrow x=\pm\frac{\pi}{2}+\frac{k3\pi}{2}\)
b/
\(\Leftrightarrow4\left(sin^2x+cos^2x\right)^2-8sin^2x.cos^2x+\sqrt{3}sin4x=2\)
\(\Leftrightarrow4-8sin^2x.cos^2x+\sqrt{3}sin4x=2\)
\(\Leftrightarrow-2sin^22x+\sqrt{3}sin4x=-2\)
\(\Leftrightarrow cos4x+\sqrt{3}sin4x=-1\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin4x+\frac{1}{2}cos4x=-\frac{1}{2}\)
\(\Leftrightarrow sin\left(4x+\frac{\pi}{6}\right)=-\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{6}=-\frac{\pi}{6}+k2\pi\\4x+\frac{\pi}{6}=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{12}+\frac{k\pi}{2}\\x=\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\)
c/
\(\left(\frac{1+cos2x}{2}\right)^2+\left(\frac{1-cos2x}{2}\right)^3=cos2x\)
\(\Leftrightarrow-cos^32x+5cos^22x-7cos2x+3=0\)
\(\Leftrightarrow\left(3-cos2x\right)\left(cos2x-1\right)^2=0\)
\(\Leftrightarrow cos2x=1\)
\(\Leftrightarrow x=k\pi\)
d/
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=cos4x\)
\(\Leftrightarrow1-\frac{3}{4}sin^22x=cos4x\)
\(\Leftrightarrow1-\frac{3}{8}\left(1-cos4x\right)=cos4x\)
\(\Leftrightarrow cos4x=1\)
\(\Leftrightarrow x=\frac{k\pi}{2}\)
Chứng minh các đẳng thứ sau:
\(1,sin^8x-cos^8x=-(\dfrac{7}{8}cos2x+\dfrac{1}{8}cos6x) \)
2\(sin^2x×cos^4x=\dfrac{1}{16}+\dfrac{1}{32}cos2x-\dfrac{1}{16}cos4x-\dfrac{1}{32}cos6x\)
1.
\(\sin ^8x-\cos ^8x=(\sin ^4x+\cos ^4x)(\sin ^4x-\cos ^4x)\)
\(=[(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x](\sin ^2x+\cos ^2x)(\sin ^2x-\cos ^2x)\)
\(=(1-2\sin ^2x\cos ^2x)(\sin ^2x-\cos ^2x)\)
\(=(1-\frac{\sin ^22x}{2})(-\cos 2x)=-\frac{(2-\sin ^22x)\cos 2x}{2}=-\frac{(1+\cos ^22x)\cos 2x}{2}\) (1)
\(-(\frac{7}{8}\cos 2x+\frac{1}{8}\cos 6x)=\frac{-7}{8}\cos 2x-\frac{1}{8}(4\cos ^32x-3\cos 2x)=-\frac{\cos 2x+\cos ^32x}{2}\)
\(=\frac{-\cos 2x(\cos ^22x+1)}{2}\) (2)
Từ $(1);(2)$ ta có đpcm.
2.
\(\text{VP}=\frac{1}{32}(2+\cos 2x-2\cos 4x-\cos 6x)\)
\(=\frac{1}{32}[2+\cos 2x-2(2\cos ^22x-1)-(4\cos ^32x-3\cos 2x)]\)
\(=\frac{1}{8}(-\cos ^32x-\cos ^22x+\cos 2x+1)=\frac{1}{8}(\cos 2x+1)(1-\cos ^22x)=\frac{1}{8}(\cos 2x+1)\sin ^22x\) (1)
\(\text{VT}=\sin ^2x\cos ^4x=\frac{1}{8}.(2\sin x\cos x)^2.2\cos ^2x=\frac{1}{8}\sin ^22x.(\cos 2x+1)(2)\)
Từ $(1);(2)$ ta có đpcm.
Giải các phương trình lượng giác sau:
1) a/ \(cos\left(10x+12\right)+4\sqrt{2}sin\left(5x+6\right)-4=0\)
b/ \(cos\left(4x+2\right)+3sin\left(2x+1\right)=2\)
2) a/ \(cos2x+sin^2x+2cosx+1=0\)
b/ \(4sin^22x-8cos^2x+ 3=0\)
c/ \(4cos2x+4sin^2x+4sinx=1\)
3) a/ \(tanx+cotx=2\)
b/ \(2tanx-2cotx=3\)
4) a/ \(2sin2x+8tanx=9\sqrt{3}\)
b/ \(2cos2x+tan^2x=5\)
5) a/ \(\left(3+cotx\right)^2=5\left(3+cotx\right)\)
b/ \(4\left(sin^2x+\dfrac{1}{sin^2x}\right)-4\left(sinx+\dfrac{1}{sinx}\right)=7\)
1a.
Đặt \(5x+6=u\)
\(cos2u+4\sqrt{2}sinu-4=0\)
\(\Leftrightarrow1-2sin^2u+4\sqrt{2}sinu-4=0\)
\(\Leftrightarrow2sin^2u-4\sqrt{2}sinu+3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinu=\dfrac{3\sqrt{2}}{2}>1\left(loại\right)\\sinu=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Rightarrow sin\left(5x+6\right)=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+6=\dfrac{\pi}{4}+k2\pi\\5x+6=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{6}{5}+\dfrac{\pi}{20}+\dfrac{k2\pi}{5}\\x=-\dfrac{6}{5}+\dfrac{3\pi}{20}+\dfrac{k2\pi}{5}\end{matrix}\right.\)
1b.
Đặt \(2x+1=u\)
\(cos2u+3sinu=2\)
\(\Leftrightarrow1-2sin^2u+3sinu=2\)
\(\Leftrightarrow2sin^2u-3sinu+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinu=1\\sinu=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(2x+1\right)=1\\sin\left(2x+1\right)=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\dfrac{\pi}{2}+k2\pi\\2x+1=\dfrac{\pi}{6}+k2\pi\\2x+1=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}+\dfrac{\pi}{4}+k\pi\\x=-\dfrac{1}{2}+\dfrac{\pi}{12}+k\pi\\x=-\dfrac{1}{2}+\dfrac{5\pi}{12}+k\pi\end{matrix}\right.\)
2a.
\(cos^2x-sin^2x+sin^2x+2cosx+1=0\)
\(\Leftrightarrow cos^2x+2cosx+1=0\)
\(\Leftrightarrow\left(cosx+1\right)^2=0\)
\(\Leftrightarrow cosx=-1\)
\(\Leftrightarrow x=\pi+k2\pi\)
1. Rút gọn biểu thức \(P=cos^4x-sin^4x\)
\(A.P=cos2x\) \(B.P=\dfrac{3}{4}+\dfrac{1}{4}cos4x\) \(C.P=\dfrac{1}{4}+\dfrac{3}{4}cos4x\) \(D.P=\dfrac{3}{4}-\dfrac{1}{4}cos4x\)
2.Đơn giản biểu thức \(D=sin\left(\dfrac{5\pi}{2}-\alpha\right)+cos\left(13\pi+\alpha\right)-3sin\left(\alpha-5\pi\right)\)
\(A.3sina-2cosa\) \(B.3sina\) \(C.-3sina\) \(D.2cosa+3sina\)
Trắc nghiệm nhưng mong mn trình bày bài làm giúp em để tham khảo với ạ. Em cảm ơn
1.Ý A
\(P=cos^4x-sin^4x=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)=cos2x\)
2. Ý B
\(D=sin\left(\dfrac{5\pi}{2}-\alpha\right)+cos\left(13\pi+\alpha\right)-3sin\left(\alpha-5\pi\right)\)
\(=sin\left(2\pi+\dfrac{\pi}{2}-\alpha\right)+cos\left(\pi+\alpha+12\pi\right)-3sin\left(\alpha+\pi-6\pi\right)\)
\(=sin\left(\dfrac{\pi}{2}-\alpha\right)+cos\left(\pi+\alpha\right)-3sin\left(\alpha+\pi\right)\)
\(=cos\alpha-cos\alpha+3sin\alpha=3sin\alpha\)
Chứng minh đẳng thức:
1 ,\(tan\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)+cot\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)=\dfrac{2}{cosx}\)
2 ,\(sin^8x-cos^8x=-\left(\dfrac{7}{8}cos2x+\dfrac{1}{8}cos6x\right)\)
3 ,\(3-4cos2x+cos4x=8sin^4x\)
4 ,\(sin\left(2x+\dfrac{\pi}{3}\right).cos\left(x-\dfrac{\pi}{6}\right)-cos\left(2x+\dfrac{\pi}{3}\right).cos\left(\dfrac{2\pi}{3}-x\right)=cosx\)
5 ,\(\sqrt{3}cos2x+sin2x+sin\left(4x-\dfrac{\pi}{3}\right)=4cos\left(2x-\dfrac{\pi}{6}\right).sin^2\left(x+\dfrac{\pi}{6}\right)\)
1,\(VT=\dfrac{sin\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}{cos\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}+\dfrac{cos\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}{sin\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}\)\(=\dfrac{sin\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)^2+cos^2\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}{cos\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right).sin\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}\)
\(=\dfrac{1}{\dfrac{1}{2}.sin\left(\dfrac{\pi}{2}+x\right)}=\dfrac{2}{cosx}=VP\)
2,\(VT=\left(sin^4x-cos^4x\right)\left(sin^4x+cos^4x\right)=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)
\(=\left(sin^2-cos^2x\right)\left(1-2sin^2x.cos^2x\right)\)\(=-cos2x\left(1-\dfrac{1}{2}sin^22x\right)\)\(=-\dfrac{cos2x\left(2-sin^22x\right)}{2}=-\dfrac{cos2x\left(1+cos^22x\right)}{2}\)
\(VP=-\left(\dfrac{7}{8}cos2x+\dfrac{1}{8}cos6x\right)=-\dfrac{7}{8}cos2x-\dfrac{1}{8}\left[4cos^32x-3cos2x\right]=-\dfrac{7}{8}.cos2x-\dfrac{1}{2}cos^32x+\dfrac{3}{8}cos2x\)
\(=-\dfrac{1}{2}cos2x-\dfrac{1}{2}cos^32x=\dfrac{-cos2x\left(1+cos^22x\right)}{2}\)
\(\Rightarrow VT=VP\)(đpcm)
3, \(VT=3-4\left(1-2sin^2x\right)+1-2sin^22x=8sin^2x-2sin^22x=8sin^2x-8.sin^2x.cos^2x=8sin^2x\left(1-cos^2x\right)=8sin^4x=VP\)
4,\(VP=\dfrac{1}{2}\left[sin\left(x+\dfrac{\pi}{2}\right)+sin\left(3x+\dfrac{\pi}{6}\right)\right]-\dfrac{1}{2}\left[cos\left(3x-\dfrac{\pi}{3}\right)+cos\left(x+\pi\right)\right]\)
\(=\dfrac{1}{2}\left(cosx+sin3x.\dfrac{\sqrt{3}}{2}+\dfrac{cos3x}{2}\right)-\dfrac{1}{2}\left(\dfrac{cos3x}{2}+sin3x.\dfrac{\sqrt{3}}{2}-cosx\right)\)
\(=\dfrac{1}{2}.2cosx=cosx=VP\)
5, \(VP=4cos\left(2x-\dfrac{\pi}{6}\right).\left(sinx.\dfrac{\sqrt{3}}{2}+\dfrac{cosx}{2}\right)^2\)\(=cos\left(2x-\dfrac{\pi}{6}\right).\left(sinx.\sqrt{3}+cosx\right)^2\)
\(VT=2.cos\left(2x-\dfrac{\pi}{6}\right)+2.sin\left(2x-\dfrac{\pi}{6}\right).cos\left(2x-\dfrac{\pi}{6}\right)=2cos\left(2x-\dfrac{\pi}{6}\right)\left[1+sin\left(2x-\dfrac{\pi}{6}\right)\right]\)
\(=2cos\left(2x-\dfrac{\pi}{6}\right)\left(1+\dfrac{sin2x.\sqrt{3}}{2}-\dfrac{cos2x}{2}\right)\)\(=2cos\left(2x-\dfrac{\pi}{6}\right)\left(sin^2x+cos^2x+sinx.cosx.\sqrt{3}-\dfrac{cos^2x-sin^2x}{2}\right)\)
\(=2cos\left(2x-\dfrac{\pi}{6}\right)\left(sin^2x.\dfrac{3}{2}+sinx.cosx.\sqrt{3}+\dfrac{cos^2x}{2}\right)\)\(=cos\left(2x-\dfrac{\pi}{6}\right)\left(sin^2x.3+2sinx.cosx.\sqrt{3}+cos^2x\right)\)
\(=cos\left(2x-\dfrac{\pi}{6}\right)\left(sinx.\sqrt{3}+cosx\right)^2\)
\(\Rightarrow VT=VP\) (dpcm)
giải các pt
a) \(cos^2x+sin2x-1=0\)
b) \(\sqrt{3}sin2x+\:cos^4x-sin^4x=\sqrt{2}\)
c) \(\:cos^2x-sin^2x=\sqrt{2}.sin\left(x+\frac{\pi}{4}\right)\)
d) \(4\left(sin^4x+cos^4x\right)+\sqrt{3}.sin4x=2\)
e) \(4sinx.cosx.cos2x+cos4x=\sqrt{2}\)
\(\text{a) }cos^2x+sin2x-1=0\\ \Leftrightarrow2sinx\cdot cosx-sin^2x=0\\ \Leftrightarrow sinx\left(2cosx-sinx\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=2cosx\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=0\\tanx=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=a\pi\\x=arctan\left(2\right)+b\pi\end{matrix}\right.\)
\(\text{b) }\sqrt{3}sin2x+cos^4x-sin^4x=\sqrt{2}\\ \Leftrightarrow\sqrt{3}sin2x+\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)=\sqrt{2}\\ \Leftrightarrow\frac{\sqrt{3}}{2}\cdot sin2x+\frac{1}{2}\cdot cos2x=\frac{\sqrt{2}}{2}\\ \Leftrightarrow cos\frac{\pi}{6}\cdot sin2x+sin\frac{\pi}{6}\cdot cos2x=\frac{\sqrt{2}}{2}\\ \Leftrightarrow cos\frac{\pi}{6}\cdot sin2x+sin\frac{\pi}{6}\cdot cos2x=\frac{\sqrt{2}}{2}\\ \Leftrightarrow sin\left(2x+\frac{\pi}{6}\right)=sin\frac{\pi}{4}\\ \\ \Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{6}=\frac{\pi}{4}+a2\pi\\2x+\frac{\pi}{6}=\frac{3\pi}{4}+b2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{24}+a\pi\\x=\frac{7\pi}{24}+b\pi\end{matrix}\right.\)
\(c\text{) }cos^2x-sin^2x=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\\ \Leftrightarrow cos^2x-sin^2x=\sqrt{2}\left(sinx\cdot\frac{\sqrt{2}}{2}+cosx\cdot\frac{\sqrt{2}}{2}\right)\\ \Leftrightarrow\left(cosx-sinx\right)\left(sinx+cosx\right)=sinx+cosx\\ \Leftrightarrow\left[{}\begin{matrix}cosx-sinx=1\\sinx=-cosx\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}cos^2x+\left(cosx-1\right)^2=1\\tanx=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\\tanx=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+a\pi\\x=b2\pi\\x=\frac{3\pi}{4}=c\pi\end{matrix}\right.\)
\(d\text{) }4\left(sin^4x+cos^4x\right)+\sqrt{3}sin4x=2\\ \Leftrightarrow4\left(1-2sin^2x\cdot cos^2x\right)+\sqrt{3}sin4x=2\\ \Leftrightarrow-8sin^2x\cdot cos^2x+\sqrt{3}sin4x=-2\\ \Leftrightarrow-2sin^22x+\sqrt{3}sin4x=-2\\ \Leftrightarrow cos4x-1+\sqrt{3}sin4x=-2\\ \Leftrightarrow\frac{1}{2}cos4x+\frac{\sqrt{3}}{2}sin4x=-\frac{1}{2}\\ \Leftrightarrow sin\frac{\pi}{6}\cdot cos4x+cos\frac{\pi}{6}\cdot sin4x=-\frac{1}{2}\\ \Leftrightarrow sin\left(4x+\frac{\pi}{6}\right)=sin\frac{-\pi}{6}\\ \Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{6}=\frac{-\pi}{6}+a2\pi\\4x+\frac{\pi}{6}=\frac{7\pi}{6}+b2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-\pi}{12}+\frac{a\pi}{2}\\x=\frac{\pi}{4}+\frac{b\pi}{2}\end{matrix}\right.\)
\(e\text{) }4sinx\cdot cosx\cdot cos2x+cos4x=\sqrt{2}\\ \Leftrightarrow sin4x+cos4x=\sqrt{2}\\ \Leftrightarrow sin4x\cdot\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}cos4x=1\\ \Leftrightarrow sin4x\cdot cos\frac{\pi}{4}+cos4x\cdot sin\frac{\pi}{4}=1\\ \Leftrightarrow sin\left(4x+\frac{\pi}{4}\right)=1=sin\frac{\pi}{2}\\ \Leftrightarrow4x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\\ \Leftrightarrow x=\frac{\pi}{16}+\frac{k\pi}{2}\)
Chứng minh
a) \(sin^4x=\frac{3}{8}-\frac{1}{2}cos2x+\frac{1}{8}cos4x\)
b) \(\frac{cos\left(a+b\right)cos\left(a-b\right)}{cos^2a.cos^2b}=1-tan^2a.tan^2b\)
\(sin^4x=\left(sin^2x\right)^2=\left(\frac{1}{2}-\frac{1}{2}cos2x\right)^2=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x\)
\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}\left(\frac{1}{2}+\frac{1}{2}cos4x\right)=\frac{3}{8}-\frac{1}{2}cos2x+\frac{1}{8}cos4x\)
\(\frac{cos\left(a+b\right)cos\left(a-b\right)}{cos^2a.cos^2b}=\frac{\left(cosa.cosb-sina.sinb\right)\left(cosa.cosb+sina.sinb\right)}{cos^2a.cos^2b}\)
\(=\frac{cos^2a.cos^2b-sin^2a.sin^2b}{cos^2a.cos^2b}=1-\frac{sin^2a.sin^2b}{cos^2a.cos^2b}=1-tan^2a.tan^2b\)