Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
White Boy
Xem chi tiết
Hoàng Lê Bảo Ngọc
24 tháng 10 2016 lúc 11:38

Giả thiết của dề bài chưa đúng, mình sửa lại thành \(cosA+cosB+cosC=\sqrt{cosA.cosB}+\sqrt{cosB.cosC}+\sqrt{cosC.cosA}\)

Đặt \(a=\sqrt{cosA},b=\sqrt{cosB},c=\sqrt{cosC}\)

Suy từ giả thiết : 

\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a,b,c>0\end{cases}}\)

Vậy ta có \(\sqrt{cosA}=\sqrt{cosB}=\sqrt{cosC}\Rightarrow\hept{\begin{cases}cosA=cosB=cosC\\\widehat{A}+\widehat{B}+\widehat{C}=180^o\end{cases}}\)

\(\Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=60^o\)

\(\Rightarrow\Delta ABC\) là tam giác đều.

Hokage Naruto
Xem chi tiết
Khôi Bùi
8 tháng 6 2021 lúc 18:08

Ta có : \(cos2A+2\sqrt{2}\left(cosB+cosC\right)=3\)

\(\Leftrightarrow1-2sin^2A+2\sqrt{2}.2.cos\left(\dfrac{B+C}{2}\right).cos\left(\dfrac{B-C}{2}\right)=3\)

\(\Leftrightarrow2sin^2A-4\sqrt{2}.sin\dfrac{A}{2}.cos\left(\dfrac{B-C}{2}\right)+2=0\)

\(\Leftrightarrow sin^2A-2\sqrt{2}.sin\dfrac{A}{2}.cos\left(\dfrac{B-C}{2}\right)+1=0\) 

\(\Delta\) ABC không tù nên \(cos\dfrac{A}{2}\ge cos45^o=\dfrac{\sqrt{2}}{2}\) 

Suy ra : VT \(\ge sin^2A-4.cos\dfrac{A}{2}.sin\dfrac{A}{2}.cos\left(\dfrac{B-C}{2}\right)+1=K\)

Thấy : \(K=sin^2A-2.sinA.cos\left(\dfrac{B-C}{2}\right)+cos\left(\dfrac{B-C}{2}\right)^2+1-cos\left(\dfrac{B-C}{2}\right)^2\)

\(=\left(sinA-cos\left(\dfrac{B-C}{2}\right)\right)^2+sin^2\left(\dfrac{B-C}{2}\right)\ge0\) 

Suy ra : \(VT\ge K\ge0=VP\)

 Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}sinA=cos\left(\dfrac{B-C}{2}\right)\\sin\left(\dfrac{B-C}{2}\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}sinA=cos0^o=1\\B=C\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}A=\dfrac{\pi}{2}\\B=C=\dfrac{\pi}{4}\end{matrix}\right.\)  ( do \(A+B+C=\pi\) ) 

Vậy ... 

Đặng Phương Nam
Xem chi tiết
Trần Thị Loan
20 tháng 6 2015 lúc 14:47

<=> 2.cos2A - 1  + 2\(\sqrt{2}\). (cosB + cosC) = 3

<=> 2.cos2A +  2\(\sqrt{2}\). 2. cos\(\frac{B+C}{2}\). cos\(\frac{B-C}{2}\)  - 4 = 0

<=> 2. cos2A +  4\(\sqrt{2}\).sin \(\frac{A}{2}\). cos\(\frac{B-C}{2}\)  - 4 = 0 (Do  cos\(\frac{B+C}{2}\)=  cos\(\frac{180^o-A}{2}\)= sin \(\frac{A}{2}\))

Nhận xét: tam giác ABC tù nên cosA > 0;  Mà cosA \(\le\) 1   => cos2\(\le\) cosA

Có: cos\(\frac{B-C}{2}\) \(\le\) 1

=>0 =  2. cos2A +  4\(\sqrt{2}\).sin \(\frac{A}{2}\). cos\(\frac{B-C}{2}\)  - 4 \(\le\) 2cosA +   4\(\sqrt{2}\).sin \(\frac{A}{2}\). cos\(\frac{B-C}{2}\)  - 4

= 2.(1 - 2sin2 \(\frac{A}{2}\)) +  4\(\sqrt{2}\).sin \(\frac{A}{2}\)  - 4 = -2. (2sin2 \(\frac{A}{2}\)-  2\(\sqrt{2}\).sin \(\frac{A}{2}\) + 1) =  -2. \(\left(\sqrt{2}sin\frac{A}{2}-1\right)^2\)\(\le\)0

=>   \(\sqrt{2}sin\frac{A}{2}-1=0\) <=> \(sin\frac{A}{2}=\frac{1}{\sqrt{2}}\)<=> A/2 = 45o

=> góc A = 90o

Dấu "=" xảy ra  <=> cos\(\frac{B-C}{2}\) = 1 => B - C = 0 => B = C mà A = 90o

=> B = C = 45o

vậy..........

 

 

Nguyễn Thanh
Xem chi tiết
Unruly Kid
3 tháng 3 2019 lúc 16:31

\(\Rightarrow \tan A+\tan C=2\tan B\)

\(\Leftrightarrow \frac{\sin\left ( A+C \right )}{\cos A\cos C}=2\cdot\frac{\sin\left ( A+C \right )}{\cos B}\\\)

\(\Rightarrow \cos B=2\cos A\cos C\)

\(\Leftrightarrow 2\cos B=\cos(A-C)\)

\(\left (\cos A+\cos C \right )^2=\cos^2 A+\cos^2 C+2\cos A\cos C\\=\frac{\cos2A+\cos2C}{2}+1+\cos B\\=-\cos(B)\cos(A-C)+1+\cos B \\=-2\cos^2B+\cos B+1 \le \frac{9}{8}\\\Rightarrow \cos A+\cos C\le \frac{3\sqrt2}{4}\)

Chứng minh hoàn tất.

Phạm Khánh Linh
Xem chi tiết
bob davis
12 tháng 5 2022 lúc 22:33

use mot cay gay

Lê Trần Quỳnh Anh
Xem chi tiết
_ɦყυ_
24 tháng 7 2020 lúc 21:17

Ta chứng minh chiều nghịch:

Khi tam giác ABC đều, góc A=gócB=gócC=60*

Khi đó cosA+cosB+cosC=3/2(đpcm)

Ta chứng minh chiều thuận

Ta chứng minh cosA+cosB+cosC≤3/2

Thật vậy:

 Mà theo gt, cosA+cosB+cosC=3/2

nên ta có tam giác ABC đều(đpcm)

Khách vãng lai đã xóa
Tran Le Khanh Linh
24 tháng 7 2020 lúc 21:20

A B C D E F

vẽ AD,BE, CF là các đường cao của tam giác ABC

\(\cos A=\sqrt{\cos BAE\cdot\cos CAF}=\sqrt{\frac{AE}{AB}\cdot\frac{AE}{AC}}=\sqrt{\frac{AF}{AB}\cdot\frac{AE}{AC}}\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}\right)\)

ta có \(\cos A\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}\right)\left(1\right)\)

tương tự \(\cos B\le\frac{1}{2}\left(\frac{BF}{AB}+\frac{BD}{BC}\right)\left(2\right);\cos C\le\frac{1}{2}\left(\frac{CD}{BC}+\frac{CE}{AC}\right)\left(3\right)\)

do đó \(\cos A+\cos B+\cos C\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}+\frac{BF}{AB}+\frac{BD}{BC}+\frac{CD}{BC}+\frac{CE}{AC}\right)\)

\(\Rightarrow\cos A+\cos B+\cos C\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{BF}{AB}+\frac{AE}{AC}+\frac{CE}{AC}+\frac{BD}{BC}+\frac{CD}{BC}\right)\)

\(\Rightarrow\cos A+\cos B+\cos C\le\frac{3}{2}\)

dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{AF}{AB}=\frac{AE}{AC}\\\frac{BF}{AB}=\frac{BD}{BC}\\\frac{CD}{BC}=\frac{CE}{AC}\end{cases}}\Leftrightarrow AB=AC=BC\)

do vậy cosA+cosB+cosC=3/2 <=> AB=AC=BC <=> tam giác ABC đều

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
24 tháng 7 2020 lúc 21:49

Cách khác khỏi phải dùng hình học :v

\(A=\cos A+\cos B+\cos C\)

\(=\left(\cos A+\cos B\right)\cdot1+\sin A\cdot\sin B-\cos A\cdot\cos B\)

\(\le\frac{1}{2}\left[\left(\cos A+\cos B\right)^2+1\right]+\frac{1}{2}\left(\sin^2A+\sin^2B\right)-\cos A\cdot\cos B\)

\(=\frac{1}{2}\left(\cos^2A+\sin^2A+\cos^2B+\sin^2B\right)+\frac{1}{2}\)

\(=\frac{3}{2}\)

ez Problem :v

Khách vãng lai đã xóa
Đặng Thảo Chi
Xem chi tiết
The Hell ? What
Xem chi tiết
Đoàn Minh Huy
Xem chi tiết