phân tích các đa thức sau thành nhân tử
A = \(8x^3-24x^2+18x\)
Bài 5. Phân tích các đa thức thành nhân tử
a) (x2-4x)2-8(x2-4x)+15 b) (x2+2x)2+9x2+18x+20
c) ( x+1)(x+2)(x+3)(x+4)-24 d) (x-y+5)2-2(x-y+5)+1
Bài 6. Phân tích các đa thức thành nhân tử
a) x2y+x2-y-1 b) (x2+x)2+4(x2+x)-12
c) (6x+5)2(3x+2)(x+1)-6
phân tích các đa thức sau thành nhân tử
a) 8x^3 - 1/125y^3
b) -x^3 + 6x^2y - 12xy^2 + 8y^3
a
\(8x^3-\dfrac{1}{125}y^3\\ =\left(2x\right)^3-\left(\dfrac{1}{5}y\right)^3\\ =\left(2x-\dfrac{1}{5}y\right)\left[\left(2x\right)^2+2x.\dfrac{1}{5}y+\left(\dfrac{1}{5}y\right)^2\right]\\ =\left(2x-\dfrac{1}{5}y\right)\left(4x^2+\dfrac{2}{5}xy+\dfrac{1}{25}y^2\right)\)
b
\(-x^3+6x^2y-12xy^2+8y^3\\ =-\left(x^3-6x^2y+12xy^2-8y^3\right)\\ =-\left(x^3-3.2y.x^2+3.\left(2y\right)^2.x-\left(2y\right)^3\right)\\ =-\left(x-2y\right)^3\\ =-\left(x-2y\right)\left(x-2y\right)\left(x-2y\right)\)
a: 8x^3-1/125y^3
=(2x)^3-(1/5y)^3
=(2x-1/5y)(4x^2+2/5xy+1/25y^2)
b: =(2y-x)^3
a) \(8x^3-\dfrac{1}{125}y^3\)
\(=\left(2x\right)^3-\left(\dfrac{1}{5}y\right)^3\)
\(=\left(2x-\dfrac{1}{5}y\right)\left[\left(2x\right)^2+2x\cdot\dfrac{1}{5}y+\left(\dfrac{1}{5}y\right)^2\right]\)
\(=\left(2x-\dfrac{1}{5}y\right)\left(4x^2+\dfrac{2}{5}xy+\dfrac{1}{24}y^2\right)\)
b) \(-x^3+6x^2y-12xy^2+8y^3\)
\(=-\left(x^3-6x^2y+12xy^2-8y^2\right)\)
\(=-\left(x^3-3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2-\left(2y\right)^3\right)\)
\(=-\left(x-2y\right)^3\)
bái 3 phân tích các đa thức sau thành nhân tử
a; x mũ 3-x mũ 2 -4xmũ 2+8x-4
b;4x mũ 2-25-(x mũ 2-5 ).(2x+7)
2/phân tích đa thức thành nhân tử
a/ 4x(x-1)-6x+6
3/tìm x
a/6x^2 -24x =0
2.
a) 4x(x-1)-6x+6
= 4x(x-1)-6(x-1)
= (4x-6)(x-1)
3.
a) 6x2-24x=0
6x(x-4)=0
TH1: 6x=0 TH2: x-4=0
x=0 x=4
Vậy x\(\in\){0;4}
2. a. \(4x\left(x-1\right)-6x+6\)
\(=4x\left(x-1\right)-6\left(x-1\right)\)
\(=\left(4x-6\right)\left(x-1\right)\)
3. a. \(6x^2-24x=0\)
\(\Leftrightarrow6x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}6x=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Bài 3:
a: \(\Leftrightarrow6x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Phân tích đa thức thành nhân tử
a/ 3x2 – 24x + 48
b/ 5x2 – 5
c/ x2 + 2xy – 9 + y2
\(a,=3\left(x^2-8x+16\right)=3\left(x-4\right)^2\\ b,=5\left(x^2-1\right)=5\left(x-1\right)\left(x+1\right)\\ c,=\left(x+y\right)^2-9=\left(x+y+3\right)\left(x+y-3\right)\)
a) \(=3\left(x^2-8x+16\right)=3\left(x-4\right)^2\)
b) \(=5\left(x^2-1\right)=5\left(x-1\right)\left(x+1\right)\)
c) \(=\left(x+y\right)^2-9=\left(x+y-3\right)\left(x+y+3\right)\)
Phân tích các đa tử sau thành nhân tử
a. 15x^2 – 5x^3
b. 8x^3 +4x^2y – y^3 – 2xy^2
c. x^8 + 64y^4
a: \(15x^2-5x^3=5x^2\left(3-x\right)\)
b: \(8x^3-y^3+4x^2y-2xy^2\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)+2xy\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+4xy+y^2\right)\)
\(=\left(2x-y\right)\left(2x+y\right)^2\)
c: Ta có: \(x^8+64y^4\)
\(=x^8+16x^4y^2+64y^4-16x^4y^2\)
\(=\left(x^4+8y^2\right)^2-\left(4x^2y\right)^2\)
\(=\left(x^2-4x^2y+8y^2\right)\left(x^2+4x^2y+8y^2\right)\)
Phân tích đa thức sau thành nhân tử
a. 27a^2b^2+18ab+3
b.5x^2-y+5xy-x
c.2x^3y^2-8x^3-12x^2y-6xy^2-y^3+x^2y^3
Phân tích đa thức thành nhân tử
a/ 4x2 - 8x + 4
Phân tích đa thức thành nhân tử
a/ 4x 2 - 8x + 4
b/ x 2 – y 2 + 3x + 3y
\(a,=4\left(x-1\right)^2\\ b,=\left(x-y\right)\left(x+y\right)+3\left(x+y\right)=\left(x+y\right)\left(x-y+3\right)\)
a, 4x2 - 8x + 4 = (2x)2 - 2.2x.2 + 2 = (2x - 2)2
b, x2 - y2 + 3x + 3y = (x2 - y2) + (3x + 3y) = (x- y). (x + y) + 3.(x + y) = (x+y).(x- y + 3)