Phân tích các đa thức sau thành nhân tử
9 - 4x mũ 2 - 4xy - y mũ 2
Phân tích các đa thức sau thành nhân tử
X mũ 2 y - y + x y mũ 2 - x
\(x^2y-y+xy^2-x\)
=> \(x\left(xy-1\right)+y\left(-1+xy\right)\)
=> \(\left(-1+xy\right)\left(x+y\right)\)
Phân tích các đa thức sau thành nhân tử
X mũ 2 - xy - 8x + 8y
X mũ 2 - 12x - y mũ 2 + 36
a,\(x^2\)- xy - 8x + 8y
= \(\left(x^2-8x\right)\)- (xy - 8y)
= x( x - 8 ) - y( x - 8)
= (x - y)(x - 8)
Phân tích các đa thức sau thành nhân tử
5 x mũ 2 x - 10xy + 5 y mũ 2 x
2 x mũ 2 + 2 y mũ 2 - x mũ 2 z + z - y mũ 2 z - 2
Phân tích các đa thức sau thành nhân tử
X mũ 8 + x mũ 7 + 1
X mũ 4 + 64
a, \(x^8+x^7+1\)
= \(x^7\left(x+1\right)+1\)
= \(x^7\left(x+1\right)+1+x-x\)
= \(x^7\left(x+1\right)+\left(x+1\right)-x\)
= \(\left(x^7+1\right)\left(x+1\right)-x\)
a) \(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\) \(=x^6\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
b) \(x^4+64\)
\(=\left(x^2+8\right)^2-16x^2\)
\(=\left(x^2+8+4x\right)\left(x^2+8-4x\right)\)
Phân tích các đa thức sau thành nhân tử
2 x mũ 2 + 10 x + 8
2x2 + 10x + 8 = 2x2 + 2x + 8x + 8 = (2x2 + 2x) + (8x + 8)
= 2x(x + 1) + 8(x + 1) = (x + 1)(2x + 8)
Phân tích đa thức thành nhân tử : x2 + 3y2 - 4xy + 10x - 12y + 9
\(x^2+3y^2-4xy+10x-12y+9\)
\(=\left(x^2-xy+x\right)+9x-3xy+3y^2-12y+9\)
\(=\left(x^2-xy+x\right)+\left(9x-9y+9\right)-3xy+3y^2-3y\)
\(=\left(x^2-xy+x\right)+\left(9x-9y+9\right)-\left(3xy-3y^2+3y\right)\)
\(=x\left(x-y+1\right)+9\left(x-y+1\right)-3y\left(x-y+1\right)\\ =\left(x-y+1\right)\left(x+9-3y\right)\)
Phân tích đa thức sau thành nhân tử: `2x^2 + 2y^2 - 4x - 18`
Đa thức này không phân tích được nhé bạn
phân tích đa thức thành nhân tử:(giúp mình cái mình cảm ơn nhiều)
x3-x+4x2y+4xy2+y3-y
bài này 1h rùi,chắc chờ tui ngủ dậy làm;
= (x+y)3 - (x+y) + xy(x+y) =
= (x+y)((x+y)2 -1 +xy)) = (x+y)(x2 +3xy +y2 -1)
Phân tích đa thức sau thành nhân tử : (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=\left(x^2+4x+8\right)^2+2x\left(x^2+4x+8\right)+x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8\right)\left(x^2+4x+8+2x\right)+x\left(x^2+4x+8+2x\right)\)
\(=\left(x^2+4x+8\right)\left(x^2+6x+8\right)+x\left(x^2+6x+8\right)\)
\(=\left(x^2+4x+8+x\right)\left(x^2+6x+8\right)=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)