\(\sqrt{x+1}+\sqrt{7-x}=x^2-6x+13\)
1 Cho a=\(\frac{-1+\sqrt{2}}{2}\)
b=\(\frac{-1-\sqrt{2}}{2}\)
Tính \(a^7+b^7\)
2 Cho biết \(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}=1\)
Tính \(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\)
2) Dễ thấy\(\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)=x^2-6x+13-x^2+6x-10=3\)
\(\Leftrightarrow1.\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)=3\)
\(\Leftrightarrow\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}=3\)
Ta có: a+ b= \(\frac{-1+\sqrt{2}}{2}\) + \(\frac{-1-\sqrt{2}}{2}\)= -1
a*b = \(\frac{-1+\sqrt{2}}{2}\)* \(\frac{-1-\sqrt{2}}{2}\)= -\(\frac{1}{4}\)
a2 + b2 = (a+ b)2 - 2ab = 1+ \(\frac{1}{2}\)= \(\frac{3}{2}\)
a4 + b4 = (a2 + b2 )2 - 2a2b2 = \(\frac{9}{4}\)- \(\frac{1}{8}\)= \(\frac{17}{8}\)
a3 + b3 = ( a + b)3 - 3ab(a + b ) = -1-\(\frac{3}{4}\)= \(\frac{-7}{4}\)
vay a7 + b7 = (a3 + b3 )(a4 + b4 ) -a3b3(a+b)= \(\frac{-7}{4}\)* \(\frac{17}{8}\)- (-\(\frac{1}{64}\)) * (-1) = \(\frac{-239}{64}\)
\(\sqrt{7-x}+\sqrt{x+1}=\sqrt{x^2-6x+13}\)
\(\text{Condition}:-1\le x\le7\)
Đặt:\(\left\{{}\begin{matrix}a=\sqrt{7-x}\ge0\\b=\sqrt{x+1}\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=\sqrt{20-a^2b^2}\\a^2+b^2=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2b^2+2ab-12=0\\a^2+b^2=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(ab+1+\sqrt{13}\right)\left(ab+1-\sqrt{13}\right)=0\\a^2+b^2=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}ab=\sqrt{13}-1\\a^2+b^2=8\end{matrix}\right.\) \(\left(ab+\sqrt{13}+1>0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=\sqrt{6+2\sqrt{13}}\\ab=\sqrt{13}-1\end{matrix}\right.\)
you giải cái này đi
\(\sqrt{7-x}+\sqrt{x+1}=x^2-6x+13\)
Gpt \(\sqrt{7-x}+\sqrt{x+1}=x^2-6x+13\)
\(\sqrt{7-x}+\sqrt{x+1}=x^2-6x+13\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{7-x}+\sqrt{x+1}\right)^2\)
\(\le\left(1+1\right)\left(7-x+x+1\right)=16\)
\(\Rightarrow VT^2\le16\Rightarrow VT\le4\)
Lại có: \(VP=x^2-6x+13\)
\(=x^2-6x+9+4=\left(x-3\right)^2+4\ge4\)
Suy ra \(VT\le VP=4\) xảy ra khi \(VT=VP=4\)
\(\Rightarrow\left(x-3\right)^2+4=4\Rightarrow x-3=0\Rightarrow x=3\)
Cho biết : \(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\)=1
Tính : \(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\)=?
Cho \(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}=1\) Tính: \(A=\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\)
Ta có: \(A\cdot1=\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)=x^2-6x+13-x^2+6x-10=3\)
=> A = 3
Giải pt: \(\sqrt{7-x}+\sqrt{x+1}=x^2-6x+13\)
\(\sqrt{7-x}+\sqrt{x+1}=x^2-6x+13,đkxđ:-1\le x\le7,\Leftrightarrow\left(\sqrt{7-x}+\sqrt{x+1}\right)^2=\left(x^2-6x+13\right)^2\Leftrightarrow7-x+x+1+2\sqrt{\left(7-x\right)\left(x+1\right)}=\left(x^2-6x+13\right)\left(x^2-6x+13\right)\Leftrightarrow8+2\sqrt{7x+8-x^2-x}=x^4-6x^3+13x^2-6x^3+36x^2-78x+13x^2-78x+169\Leftrightarrow8+2\sqrt{-x^2+6x+8}=x^4-12x^3+62x^2-120x+169\Leftrightarrow Bírồi:< \)
\(Chot=7-x\Rightarrow x=7-t\Rightarrow\sqrt{7-x}=\sqrt{7-7+t}=\sqrt{t}và\sqrt{x+1}=\sqrt{7-t+1}=\sqrt{8-t}vàx^2-6x+13=\left(7-t\right)^2-6\left(7-t\right)+13,tacópt:\sqrt{t}+\sqrt{8-t}=49-14t+t^2-42+6t+13\Leftrightarrow\sqrt{t}+\sqrt{8-t}=t^2-8t+20=t^2-2.4.t+16+4=\left(t-4\right)^2+4\Leftrightarrow\left(\sqrt{t}+\sqrt{8-t}\right)^2=\left[\left(t-4\right)^2+4\right]^2\Leftrightarrow t-t+8+2\sqrt{8t-t^2}=...\left(bítiếp\right)\)
\(\sqrt{7-x}+\sqrt{x+1}=x^2-6x+13\left(đk:-1\le x\le7\right)\)
Với a,b>0 ta AD BĐT: \(\sqrt{a}+\sqrt{b}\le2\sqrt{\frac{a+b}{2}}\) (tự CM nha ).Dấu "=" xảy ra<=>a=b (1)
AD bđt (1) có:
\(\sqrt{7-x}+\sqrt{x+1}\le2\sqrt{\frac{7-x+x+1}{2}}\)
\(\le2\sqrt{4}\) =4 (*)
Có x2-6x+13=(x-3)2+4 \(\ge4\) (**)
Từ (*),(**) => Dấu bằng xảy ra \(< =>\left\{{}\begin{matrix}7-x=x+1\\x-3=0\end{matrix}\right.\) \(< =>\left\{{}\begin{matrix}x=3\\x=3\end{matrix}\right.\)\(< =>x=3\)(tm điều kiện của x)
Vậy x=3
cho \(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}=1\)
hãy tính \(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\)
(\(\sqrt{x^2-6x+13}\) - \(\sqrt{x^2-6x+10}\))(\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\)) = x2 - 6x + 13 - x2 + 6x - 10 = 3
=>
\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\) = 3
giải phương trình : \(\sqrt{7-x}+\sqrt{x+1}=x^2-6x+13\)
\(\sqrt{7-x}+\sqrt{x+1}=x^2-6x+13\) (ĐKXĐ : \(-1\le x\le7\))
Áp dụng bất đẳng thức Bunhiacopxki vào vế trái của phương trình : \(\left(1.\sqrt{7-x}+1.\sqrt{x+1}\right)^2\le\left(1^2+1^2\right)\left(7-x+x+1\right)\)
\(\Rightarrow\left(\sqrt{7-x}+\sqrt{x+1}\right)^2\le16\Rightarrow\sqrt{7-x}+\sqrt{x+1}\le4\) (1)
Xét vế phải của phương trình : \(x^2-6x+13=\left(x^2-6x+9\right)+4=\left(x-3\right)^2+4\ge4\) (2)
Từ (1) và (2) ta suy ra phương trình ban đầu tương đương với : \(\begin{cases}\sqrt{7-x}+\sqrt{x+1}=4\\x^2-6x+13=4\end{cases}\) \(\Leftrightarrow x=3\) (TMĐK)
Vậy phương trình có nghiệm x = 3