bài 2: cho a+b+c=2p . chứng minh đẳng thức 2bc+b2+c2-a2+4p(p-a)
giúp mình với
mình đang rất cần gấp
Chứng minh đẳng thức :
a)(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=ab+bc+ca-x2 .Biết 2x=a+b+c
b)2bc+b2+c2-a2=4p(p-a) .Biết a+b+c=2p
bài 1:Tìm bốn số lẻ liên tiếp , biết rằng tích của số thứ 2 và số thứ 4 lớn hơn tích của số thứ 1 và số thứ 3 là 88
bài 2: cho a+b+c=2p . chứng minh đẳng thức 2bc+b2+c2-a2+4p(p-a)
bài 3: một khu vườn hình chữ nhật có chu vi là 280m. Người ta làm một lối đi xung quanh vườn ( thuộc đất vườn) rộng 2m . Diện tích còn lại để trồng trọt là 4256m2. Diện tích của khu vườn là bao nhiêu
giúp mình với
mình đang rất cần gấp
Chứng minh các hằng đẳng thức sau :
Nếu a + b + c = 2m thì 4m(m - a ) = b2 + c2 - a2 - 2bc
Cho a2+b2+c2=2p
a) a2-b2-c2+2bc=4(p-b)(p-c)
p2+(p-a)2+(p-b)2+(p-c)2=a2+b2+c2
2 là số mũ
bài 1:Tìm bốn số lẻ liên tiếp , biết rằng tích của số thứ 2 và số thứ 4 lớn hơn tích của số thứ 1 và số thứ 3 là 88
bài 2: cho a+b+c=2p . chứng minh đẳng thức 2bc+b2+c2-a2+4p(p-a)
bài 3: một khu vườn hình chữ nhật có chu vi là 280m. Người ta làm một lối đi xung quanh vườn ( thuộc đất vườn) rộng 2m . Diện tích còn lại để trồng trọt là 4256m2. Diện tích của khu vườn là bao nhiêu
giúp mình với
mình đang rất cần gấp
cho a,b,c là độ dài 3 cạnh của tam giác , chứng minh :
a3+b3+c3+2abc < a(b2+c2)+b(a2+c2)+c(a2+b2) < a3+b3+c3+3abc
mình cần gấp lắm , mn giúp mình với
Cho a, b, c đôi một khác nhau và khác 0 không thỏa mãn:
(a+b+c)2 = a2 + b2 + c2
Tính giá trị biểu thức: A = \(\dfrac{a^2}{a^2+2bc}\) + \(\dfrac{b^2}{b^2+2ca}\) + \(\dfrac{c^2}{c^2+2ab}\)
mk cần gấp mong mn giúp đỡ, cảm ơn mn rất nhiều.
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)
\(\Leftrightarrow2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=0\Leftrightarrow bc=-ab-ac\)
\(\dfrac{a^2}{a^2+2bc}=\dfrac{a^2}{a^2+bc-ac-ab}=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}\)
CMTT: \(\left\{{}\begin{matrix}\dfrac{b^2}{b^2+2ca}=\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}\\\dfrac{c^2}{c^2+2ab}=\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}=\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}+\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}=\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)
Cho a+b+c = 2p . Chứng minh rằng đẳng thức : \(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
\(2bc+b^2+c^2-a^2\)
\(=\left(b+c\right)^2-a^2\)
\(=\left(a+b+c\right)\left(b+c-a\right)\)
\(=2p\left(a+b+c-2a\right)\)
\(=2p\left(2p-2a\right)=4p\left(p-a\right)\)
biến đổi vế phải ta được:
4p(p -a ) = 4p\(^2\)-4pa
=(2p)\(^2\)-2p.2a
=(a+b+c)\(^2\)-2a(a+b+c)
=\(a^2+b^2+c^2+2ab+2ac+2bc\)-\(2a^2-2ab-2ac\)
=\(2bc+b^2+c^2-a^2\)=vế trái (đpcm)
Cho a+b+c= 2p. Chứng minh hằng đẳng thức
2bc + b2 + c2 -a2 = 4p(p-a)
a+b+c = 2p => 4p = 2(a+b+c); p=(a+b+c)/2
VP = 4p(p-a) = 2(a+b+c)(\(\frac{a+b+c}{2}-a\))
= \(2\left(a+b+c\right)\left(\frac{a+b+c-2a}{2}\right)\)
=\(2\left(a+b+c\right)\cdot\frac{b+c-a}{2}=\left(a+b+c\right)\left(b+c-a\right)\)
\(=ab+ac-a^2+b^2+bc-ab+bc+c^2-ac\)
\(=2bc+b^2+c^2-a^2\) = VT (đpcm)