Giúp mình với ạ :(( Tìm GTLN, GTNN
a) y= Căn sinx+3/2
b) y= sinx.cosx+1/2cos2x
tìm gtln,gtnn của y=(sinx.cosx + cosx^2)/(sinx.cosx + 1)
mn ơi giúp mk với
tìm GTLN,GTNN của hàm số
a/ y= sin2x + (\(\sqrt{3}\) +1) cos2x +sin4 x -cos4x -1
b/ (sinx -2cosx)(2sinx+cosx)-1
c/ y= (Sinx-cosx)2+2cos2x+3sinxcosx
giúp em giải chi tiết với ạ
a/ \(y=sin2x+\left(\sqrt{3}+1\right)cos2x+sin^2x-cos^2x-1\)
\(=sin2x+\sqrt{3}cos2x-1=2sin\left(2x+\frac{\pi}{3}\right)-1\)
Do \(-1\le sin\left(2x+\frac{\pi}{3}\right)\le1\Rightarrow-3\le y\le1\)
b/ \(y=2sin^2x-2cos^2x-3sinx.cosx-1\)
\(=-2cos2x-\frac{3}{2}sin2x-1=-\frac{5}{2}\left(\frac{3}{5}sinx+\frac{4}{5}cosx\right)-1\)
\(=-\frac{5}{2}sin\left(x+a\right)-1\Rightarrow-\frac{7}{2}\le y\le\frac{3}{2}\)
c/ \(y=1-sin2x+2cos2x+\frac{3}{2}sin2x=\frac{1}{2}sin2x+2cos2x+1\)
\(=\frac{\sqrt{17}}{2}\left(\frac{1}{\sqrt{17}}sin2x+\frac{4}{\sqrt{17}}cos2x\right)+1=\frac{\sqrt{17}}{2}sin\left(2x+a\right)+1\)
\(\Rightarrow-\frac{\sqrt{17}}{2}+1\le y\le\frac{\sqrt{17}}{2}+1\)
2. GTLN và GTNN của hàm số y = 3 - 2|sinx| lần lượt là?
3. GTLN của HS y = 3cos( x - π/2) +1 là?
8. GTLN và GTNN của hs y = cos^2x + 2cos2x là? ( Bài này có cách nào bấm bấm máy đc k ạ)
15. Đồ thị hàm số y = tanx-2 đi qua điểm nào?
18. Giá trị lớn nhất của HS y = sinx + 2cosx +1/sinx + cosx +2 là( chỉ cách mk bấm máy vs)
2.
\(0\le\left|sinx\right|\le1\Rightarrow1\le y\le3\)
Min và max lần lượt là 3 và 1
3.
\(cos\left(x-\frac{\pi}{2}\right)\le1\Rightarrow y\le3.1+1=4\)
8.
\(y=\frac{1}{2}+\frac{1}{2}cos2x+2cos2x=\frac{1}{2}+\frac{5}{2}cos2x\le\frac{1}{2}+\frac{5}{2}.1=3\)
15.
Nó đi qua vô số điểm nên ko có 4 đáp án để chọn thì ko ai có thể trả lời câu này cho bạn cả
18.
\(y=\frac{sinx+2cosx+1}{sinx+cosx+2}\Leftrightarrow y.sinx+y.cosx+2y=sinx+2cosx+1\)
\(\Leftrightarrow\left(y-1\right)sinx+\left(y-2\right)cosx=1-2y\)
\(\left(y-1\right)^2+\left(y-2\right)^2\ge\left(1-2y\right)^2\)
\(\Leftrightarrow2y^2+2y-4\le0\Rightarrow-2\le y\le1\)
\(\Rightarrow y_{max}=1\)
8. GTLN và GTNN của hs y = cosx^2 + 2cos2x là?
10. GTLN của HS y = 1 -2cosx - cos^2x là?
14. HS y = |sinx| là hs tuần hoàn với chu kỳ?
8.
\(y=cos^2x+2\left(2cos^2x-1\right)=5cos^2x-2\)
Do \(0\le cos^2x\le1\Rightarrow-2\le y\le3\)
\(y_{min}=-2;y_{max}=3\)
10.
\(y=2-\left(cosx+1\right)^2\le2\)
\(y_{max}=2\)
14.
Hàm tuần hoàn với chu kì \(T=\pi\)
tìm gtln và gtnn
y= căn 3 cos2x+2sinxcosx-2
y=căn3 cosx-sinx
\(y=\sqrt{3}cos2x+2sinxcosx-2\)
\(=\sqrt{3}cos2x+sin2x-2\)
Ta có: \(\left|\sqrt{3}cos2x+sin2x\right|\le\sqrt{\left(\sqrt{3}\right)^2+1^2}=2\)
Do đó \(-2\le\sqrt{3}cos2x+sin2x\le2\)
\(\Leftrightarrow-4\le\sqrt{3}cos2x+sin2x-2\le2\).
Ta có: \(\left|\sqrt{3}cosx-sinx\right|\le\sqrt{\left(\sqrt{3}\right)^2+\left(-1\right)^2}=2\)
Do đó \(-2\le\sqrt{3}cosx-sinx\le2\)
1. Tìm tập xác định của hàm số
y = sin√1+x/1-x ( căn toàn bộ biểu thức)
2. Tìm tập xác định của HS
c) y = 2 / cosx - cos3x ( cosx và cos3x đều ở dưới mẫu)
3. Tìm GTLN và GTNN
a) y = 3 - 2|sinx|
b) y = cosx + cos(x - π/3)
c) y = cos^2x +2cos2x
d) y = ✓5 - 2cos^x.sin^2x ( căn toàn bộ biểu thức)
1.
ĐKXĐ: \(\frac{1+x}{1-x}\ge0\Leftrightarrow-1\le x< 1\)
2.
\(cosx-cos3x\ne0\)
\(\Leftrightarrow cos3x\ne cosx\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x\ne x+k2\pi\\3x\ne-x+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\frac{k\pi}{2}\end{matrix}\right.\) \(\Leftrightarrow x\ne\frac{k\pi}{2}\)
3.
a. \(0\le\left|sinx\right|\le1\Rightarrow1\le y\le3\)
\(y_{min}=1\) khi \(\left|sinx\right|=1\)
\(y_{max}=3\) khi \(sinx=0\)
b. \(y=cosx+cos\left(x-\frac{\pi}{3}\right)=2cos\left(x-\frac{\pi}{6}\right).cos\frac{\pi}{6}=\sqrt{3}cos\left(x-\frac{\pi}{6}\right)\)
\(-1\le cos\left(x-\frac{\pi}{6}\right)\le1\Rightarrow-\sqrt{3}\le y\le\sqrt{3}\)
c. \(y=cos^22x+2cos2x+1-1=\left(cos2x+1\right)^2-1\ge-1\)
\(y_{min}=-1\) khi \(cos2x=-1\)
\(cos2x\le1\Leftrightarrow\left\{{}\begin{matrix}cos^22x\le1\\2cos2x\le2\end{matrix}\right.\) \(\Rightarrow y\le3\)
\(y_{max}=3\) khi \(cos2x=1\)
d. \(5-2cos^2x.sin^2x=5-\frac{1}{2}\left(2sinx.cosx\right)^2=5-\frac{1}{2}sin^22x\)
\(0\le sin^22x\le1\Rightarrow\frac{9}{2}\le5-\frac{1}{2}sin^22x\le5\)
\(\Rightarrow\sqrt{\frac{9}{2}}\le y\le\sqrt{5}\)
Tìm GTLN GTNN
y = 2cos22x + 2cos2x - 4
y = tan2x - 2√3 tanx -1 ∀ x ∈ [ -π/4 ; π/3 ]
a.
Đặt \(cos2x=t\Rightarrow t\in\left[-1;1\right]\)
Xét hàm \(y=f\left(t\right)=2t^2+2t-4\) trên \(\left[-1;1\right]\)
\(-\dfrac{b}{2a}=-\dfrac{1}{2}\in\left[-1;1\right]\)
\(f\left(-1\right)=-4\) ; \(f\left(-\dfrac{1}{2}\right)=-\dfrac{9}{2}\) ; \(f\left(1\right)=0\)
\(\Rightarrow y_{min}=-\dfrac{9}{2}\) khi \(t=-\dfrac{1}{2}\) hay \(cos2x=-\dfrac{1}{2}\)
\(y_{max}=0\) khi \(cos2x=1\)
b. Đặt \(tanx=t\Rightarrow t\in\left[-1;\sqrt{3}\right]\)
Xét hàm \(f\left(t\right)=t^2-2\sqrt{3}t-1\) trên \(\left[-1;\sqrt{3}\right]\)
\(-\dfrac{b}{2a}=\sqrt{3}\in\left[-1;\sqrt{3}\right]\)
\(f\left(-1\right)=2\sqrt{3}\) ; \(f\left(\sqrt{3}\right)=-4\)
\(y_{min}=-4\) khi \(x=\dfrac{\pi}{3}\) ; \(y_{max}=2\sqrt{3}\) khi \(x=-\dfrac{\pi}{4}\)
1. Với những giá trị nào của x ta có đẳng thức sau
A = 1/ 1+ tan^2x = cos^2x
2. Tìm TXD của hàm số
y = 1 +tanx / ✓1 - sinx
y = ✓1-2cosx / √3 - tanx ( dưới mẫu căn nơi số 3 , còn tử căn hết biểu thức)
3. GTNN của hs
y = 1 - cosx - sinx
4. GTLN của HS
y = 2 + |cosx| + |sinx|
Tìm GTLN, GTNN của hàm số :
a, y= x/2+ sin2x trên đoạn [-pi/2, pi/2]
b, y=sinx căn bậc hai cosx + cosx căn bậc hai sinx
b) Ta có:
\(y^2=\left(sinx\sqrt{cosx}+cosx\sqrt{sinx}\right)^2\le\left(sin^2x+cos^2x\right).\left(sinx+cosx\right)\)
(Áp dụng BĐT Bunhiacopxki)
\(\Leftrightarrow y^2\le sinx+cosx\Leftrightarrow y^2\le\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\le\sqrt{2}\) (Do \(sin\alpha\le1\)
\(\Rightarrow y\le\sqrt[4]{2}\)
Vậy max y = \(\sqrt[4]{2}\) \(\Leftrightarrow\dfrac{\sqrt{cosx}}{sinx}=\dfrac{\sqrt{sinx}}{cosx}\Leftrightarrow x=\dfrac{\pi}{4}+k2\pi\) (k\(\in\)Z)
Hàm số không có giá trị nhỏ nhất.