Cho tam giác ABC vuông tại a. Qua điểm D trên đáy BC kẻ đường cao vuông góc với BC cắt các đường thẳng AB và AC theo thứ tự E và G. c/m DB.DC=DE.DG
Cho tam giác ABC vuông tại A. Qua điểm D nằm trên cạnh BC vẽ đường thẳng vuông góc với BC cắt AB và AC thứ tự tại E và G. CMR: DB.DC=DE.DG
Cho △ ABC vuông tại A. Qua điểm D trên cạnh BC, kẻ đường thẳng vuông góc với BC, cắt AB, AC theo thứ tự ở E và G.
a) Chứng minh △ DBE ∽ △DGC . | b) Chứng minh: DB. DC=DE.DG . |
Cho tam giác $ABC$ có ba góc nhọn ($AB < AC$), dựng $AH$ vuông góc với $BC$ tại $H$. Gọi $M$, $N$ theo thứ tự là hình chiếu vuông góc của điểm $H$ trên $AB$ và $AC$. Đường thẳng $MN$ cắt đường thẳng $BC$ tại điểm $D$. Trên nửa mặt phẳng bờ $CD$ chứa điểm $A$ vẽ nửa đường tròn đường kính $CD$. Qua $B$ kẻ đường thẳng vuông góc với $CD$ cắt nửa đường tròn trên tại điểm $E$.
a) Chứng minh tứ giác $AMHN$ là tứ giác nội tiếp.
b) Chứng minh \(\widehat{EBM}=\widehat{DNH}\).
c) Chứng minh $DM.DN = DB.DC$.
a) Xét tam giác BHA và tam giác BAC có
góc BHA= góc BAC (=90)
góc B chung
=> tam giác BHA đồng dạng tam giác BAC (g.g)
Cho tam giác ABC vuông cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD=AE. Các đường thẳng vuông góc kẻ từ A và E với CD cắt BC ở G và H. Đường thẳng EH cắt đường thẳng AB tại M. Đường thẳng kẻ qua A//BC cắt MH ở I. C/m
a, Tam giác ACD= tam giác AME
câu a ta có : <MAE = 90
suy ra tam giác MAE là tam giác vuông :< AME + <MEA = 90 ĐỘ ( đ/lí tổng 3 góc áp dụng vào tam giác vuông )
gọi n là giao điểm của EH và CD
vì <MND =90 độ suy ra <NMD +<MPN=90độ
vì cùng phụ nhau với < m suy ra <MEA =<MDN
xét tam giác ACD và tam giác AME :
AD =AE (GT)
<MEA=<MDN (cmt)
<CAD =<MAE =90độ (do AC vuông góc với MB )
SUY RA TAM GIÁC ACD = TAM GIÁC AME(G.C.G)
:A
Gọi Z là giao điểm của EH và CD
Xét tam giác AME, ta có:
<MAE=90độ
=> <M + <E1=90độ (1)
Xét tam giác DZM, ta có:
<Z1=90độ
=> <D1+ <M =90độ (2)
Từ (1) và (2) suy ra:
=> <D1= <E1( cùng phụ với M)
Xét tam giác ACD và tam giác AME, ta có:
<DAC= <EAM= 90độ
AD=AE(giải thiết)
<D1=<E1(chứng minh trên)
=> tam giác ACD=tam giác AME(g−c−g)
Chúc bạn thành công nha =)))
Cho tam giác cân ABC, AB = AC. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB và AC thứ tự tại M và N .Chứng minh: a) DM=EN b) BC cắt MN tại trung điểm I của MN. c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC
(Cái này là mình giải trong trường hợp AM là tia đối của AB nhé)
a) Tam giác ABC cân tại A => ABC= ACB
Mà ACB= ECN(đối đỉnh) => ABC= ECN
Xét tam giác BMD và tam giác CNE có :
BDM=CEN(=900);BD=CE(GT);ABC=ECN(chứng minh trên)
Do đó tam giác BMD=tam giác CNE(g.c.g)=>MD=NE(2 cạnh tương ứng) (đpcm)
b)Vì MDE=CEN(=900)=>MD//EN(Do có 1 cặp góc bằng nhau ở vị trí SLT)
=>DMN=ENM(cặp góc SLT)
Xét tam giác DMI và tam giác ENI có :
DMN=ENM(c/m trên);MD=NE(đã c/m ở câu a);BMD=IEN(=900)
Do đó tam giác DMI= tam giác ENI(g.c.g)=>MI=NI(2 cạnh tương ứng)
Mà I nằm giữa M và N => I là TĐ của MN
Hay BC cắt MN tại TĐ I của MN.
(câu c mk ko bít làm)
Cho tam giác ABC nhọn, đường cao AH. ĐIểm M thuộc BC. ĐƯờng thẳng qua A vuông góc với AM theo thứ tự cắt các đường thẳng qua M vuông góc với AB và AC tại E và F. CMR AH, BF,CE đồng quy.
Gọi BF,CE cắt nhau tại K và cắt AC,AB lần lượt tại S,T. Đường thẳng AH cắt MF,ME lần lượt tại P,Q.
Ta dễ thấy P là trực tâm của \(\Delta\)MAC, suy ra CP // EA (Cùng vuông góc AM). Tương tự BQ // FA
Áp dụng ĐL Melelaus và ĐL Thales ta có:
\(\frac{\overline{KB}}{\overline{KF}}.\frac{\overline{TA}}{\overline{TB}}.\frac{\overline{EF}}{\overline{EA}}=1\Rightarrow\frac{\overline{TA}}{\overline{TB}}=\frac{\overline{KF}}{\overline{KB}}.\frac{\overline{EA}}{\overline{EF}}=\frac{\overline{AF}}{\overline{QB}}.\frac{\overline{EA}}{\overline{EF}}\)
\(\frac{\overline{KC}}{\overline{KE}}.\frac{\overline{SA}}{\overline{SC}}.\frac{\overline{FE}}{\overline{FA}}=1\Rightarrow\frac{\overline{SC}}{\overline{SA}}=\frac{\overline{KC}}{\overline{KE}}.\frac{\overline{FE}}{\overline{FA}}=\frac{\overline{CP}}{\overline{EA}}.\frac{\overline{FE}}{\overline{FA}}\)
Suy ra \(\frac{\overline{TA}}{\overline{TB}}.\frac{\overline{HB}}{\overline{HC}}.\frac{\overline{SC}}{\overline{SA}}=\frac{\overline{CP}}{\overline{QB}}.\frac{\overline{HB}}{\overline{HC}}=-\frac{\overline{HC}}{\overline{HB}}.\frac{\overline{HB}}{\overline{HC}}=-1\)
Áp dụng điều kiện đủ của ĐL Ceva ta thu được AH,BS,CT đồng quy hay AH,BF,CE đồng quy (đpcm).
Cho tam giác ABC vuông tại A. M là trung điểm của BC. Qua A kẻ đường thẳng d vuông góc với AM. Qua m kẻ các đường thẳng vuông góc với AB và AC, Chúng cắt đường thẳng d theo thứ tự ở D và E. CMR:
a, BD song song với CE
b,DE=DB+CE
Bài 4. (3,5 điểm) Cho tam giác ABC vuông tại A, đường cao AH, M là một điểm bất kì trên cạnh BC. Qua M kẻ các đường thẳng song song với AB và AC, chúng cắt các cạnh AC và AB theo thứ tự ở E và D. a) Tứ giác ADME là hình gì? Vì sao? b) Tính hat DHE c) Lấy điểm I đối xứng với M qua D, điểm K đối xứng với M qua E. Chứng minh I, A, K thẳng hàng. d) Xác định vị trí của điểm M để đoạn thẳng DE có độ dài nhỏ nhất?