So sánh:
A = \(\sqrt{4-2\sqrt{3}}+3\sqrt{3}\)
B = \(\frac{5\sqrt{5}+2\sqrt{2}}{\sqrt{5}+\sqrt{2}}+\frac{\sqrt{10}+10}{\sqrt{10}+1}\)
Bài 1: Tính
1, \(A=\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right).\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
2, \(B=\left(\frac{3\sqrt{125}}{15}-\frac{10-4\sqrt{6}}{\sqrt{5}-2}\right).\frac{1}{\sqrt{5}}\)
3, \(C=\left(\frac{\sqrt{1000}}{100}-\frac{5\sqrt{2}-2\sqrt{5}}{2\sqrt{5}-8}\right).\frac{\sqrt{10}}{10}\)
4, \(D=\frac{1}{\sqrt{49+20\sqrt{6}}}-\frac{1}{\sqrt{49-20\sqrt{6}}}+\frac{1}{\sqrt{7-4\sqrt{3}}}\)
5, \(E=\frac{1}{\sqrt{4-2\sqrt{3}}}-\frac{1}{\sqrt{7-\sqrt{48}}}+\frac{3}{\sqrt{14-6\sqrt{5}}}\)
6, \(F=\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
7, \(G=\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}-\sqrt{11-2\sqrt{10}}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}+\sqrt{12+8\sqrt{2}}}}\)
Tính :
a, \(B=\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
b, \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
c, \(C=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}-\frac{\sqrt{5-2\sqrt{6}}}{3}\)
\(B=\sqrt{6-2\sqrt{5}}\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)
\(=\sqrt{\left(\sqrt{5}-1\right)^2}\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)
\(=\left(\sqrt{5}-1\right)^2\left(3+\sqrt{5}\right)=\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)\)
\(=2\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)=8\)
\(A^2=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}=8+2\sqrt{6-2\sqrt{5}}\)
\(A^2=8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\sqrt{5}-2=6+2\sqrt{5}\)
\(A^2=\left(\sqrt{5}+1\right)^2\Rightarrow A=\sqrt{5}+1\) (do \(A>0\))
\(C=\frac{\sqrt{3}}{3}+\frac{\sqrt{2}}{6}-\frac{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{3}=\frac{\sqrt{3}}{3}+\frac{\sqrt{2}}{6}-\frac{\sqrt{3}-\sqrt{2}}{3}\)
\(=\frac{\sqrt{2}}{6}+\frac{\sqrt{2}}{3}=\frac{\sqrt{2}}{2}\)
Tính :
a, \(B=\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
b, \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
c, \(C=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}-\frac{\sqrt{5-2\sqrt{6}}}{3}\)
a)=\(\sqrt{3-\sqrt{5}}\).\(\sqrt{3+\sqrt{5}}\).\(\sqrt{2}\)(\(\sqrt{5}\)-\(1\))\(\sqrt{3+\sqrt{5}}\)=2\(\sqrt{2}\) \(\sqrt{\left(\sqrt{5}-1\right)^2.\left(3+\sqrt{5}\right)}\) =2\(\sqrt{2}\) .\(\sqrt{\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)}\) =2\(\sqrt{2}\)\(\sqrt{8}\) =8
b)A2=8+2 căn[\(\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)\)]=8+2\(\sqrt{6-2\sqrt{5}}\)=8+2(\(\sqrt{5}\)-1)=6+2\(\sqrt{5}\)=(\(\sqrt{5}+1\))2 =>A=\(\sqrt{5}\)+1
c)C=\(\frac{2\sqrt{3}}{6}\)+\(\frac{\sqrt{2}}{6}\)-\(\frac{2\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{6}\)=\(\frac{2\sqrt{3}+\sqrt{2}-2\left(\sqrt{3}-\sqrt{2}\right)}{6}\)=\(\frac{3\sqrt{2}}{6}\)=\(\frac{1}{\sqrt{2}}\)
1
a. \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\) b.\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\) c. \(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
d. \(\frac{\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\) e. \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\) f. \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
a/ \(\frac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\frac{8\left(1+\sqrt{5}\right)}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}=2\sqrt{5}-2\left(1+\sqrt{5}\right)=-2\)
b/ \(\frac{2\left(\sqrt{8}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-\sqrt{8}\right)}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}=\frac{-2}{\sqrt{6}}-\frac{1}{\sqrt{6}}=\frac{-3}{\sqrt{6}}=-\frac{\sqrt{6}}{2}\)
c/ \(\frac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}+\frac{\sqrt{\left(2+\sqrt{3}\right)^2}}{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}=2-\sqrt{3}+2+\sqrt{3}=4\)
d/ \(\frac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\frac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\frac{\left(\sqrt{5}-1\right)^2\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}=\frac{\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)}{8}=\frac{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}=1\)
e/ \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\frac{\sqrt{2}}{2+\sqrt{4+2\sqrt{3}}}+\frac{\sqrt{2}}{2-\sqrt{4-2\sqrt{3}}}\)
\(=\frac{\sqrt{2}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{\sqrt{2}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}=\frac{\sqrt{2}}{3+\sqrt{3}}+\frac{\sqrt{2}}{3-\sqrt{3}}=\frac{\sqrt{2}\left(3-\sqrt{3}+3+\sqrt{3}\right)}{6}=\sqrt{2}\)
f/ \(\frac{9+4\sqrt{5}-8\sqrt{5}}{2\left(\sqrt{5}-2\right)}=\frac{9-4\sqrt{5}}{2\left(\sqrt{5}-2\right)}=\frac{\left(\sqrt{5}-2\right)^2}{2\left(\sqrt{5}-2\right)}=\frac{\sqrt{5}-2}{2}\)
Thực hiện phép tính
a, \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)
b. \(\frac{\sqrt{3-\sqrt{5}.\left(3+\sqrt{5}\right)}}{\sqrt{10}+\sqrt{2}}\)
c, \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
d, \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
a/\(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}=\frac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}=2\sqrt{5}+\frac{8}{1-\sqrt{5}}\)
\(=\frac{2\sqrt{5}-10+8}{1-\sqrt{5}}=\frac{-2\left(1-\sqrt{5}\right)}{1-\sqrt{5}}=-2\)
b/Đề sai
c/\(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\frac{\sqrt{2}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{\sqrt{2}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\frac{\sqrt{2}}{3+\sqrt{3}}+\frac{\sqrt{2}}{3-\sqrt{3}}=\sqrt{2}\left(\frac{3+\sqrt{3}+3-\sqrt{3}}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\right)=\frac{6\sqrt{2}}{6}=\sqrt{2}\)
d/ \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}=\frac{9+4\sqrt{5}-8\sqrt{5}}{2\sqrt{5}-4}=\frac{9-4\sqrt{5}}{2\left(\sqrt{5}-2\right)}=\frac{\left(\sqrt{5}-2\right)^2}{2\left(\sqrt{5}-2\right)}=\frac{\sqrt{5}-2}{2}\)
Thực hện phép tính
a, \(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
b,\(\frac{\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
c, \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
d, \(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\frac{1}{\sqrt{5}-\sqrt{2}}\)
a: \(=\dfrac{4\sqrt{2}-2\sqrt{3}}{3\sqrt{2}-4\sqrt{3}}-\dfrac{1}{\sqrt{6}}\)
\(=\dfrac{2\left(2\sqrt{2}-\sqrt{3}\right)}{\sqrt{3}\left(\sqrt{6}-4\right)}-\dfrac{1}{\sqrt{6}}\)
\(=\dfrac{-\sqrt{6}}{3}-\dfrac{1}{\sqrt{6}}=\dfrac{-\sqrt{6}}{2}\)
b: \(=\dfrac{\sqrt{6-2\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{2\sqrt{5}+2}=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\sqrt{5}+2}\)
\(=\dfrac{3\sqrt{5}+5-3-\sqrt{5}}{2\sqrt{5}+2}=\dfrac{2\sqrt{5}+2}{2\sqrt{5}+2}=1\)
d: \(=-\left(\sqrt{5}+\sqrt{2}\right)\cdot\left(\sqrt{5}-\sqrt{2}\right)=-3\)
Thực hiện các phép tính sau:
a)\(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)
b) \(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
c) \(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
d) \(\frac{\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
e) \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
f) \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
a) Ta có: \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)
\(=\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(1-\sqrt{5}\right)}+\frac{8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
\(=\frac{10-10\sqrt{5}+2\sqrt{10}-10\sqrt{2}+8\sqrt{5}+8\sqrt{2}}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
\(=\frac{10-2\sqrt{5}+2\sqrt{10}-2\sqrt{2}}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
\(=\frac{2\sqrt{5}\left(\sqrt{5}-1\right)+2\sqrt{2}\left(\sqrt{5}-1\right)}{-\left(\sqrt{5}-1\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
\(=\frac{2\cdot\left(\sqrt{5}-1\right)\left(\sqrt{5}+\sqrt{2}\right)}{-\left(\sqrt{5}-1\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
\(=\frac{2}{-1}=-2\)
b) Ta có: \(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
\(=\frac{-2\left(\sqrt{3}-\sqrt{8}\right)}{\sqrt{6}\left(\sqrt{3}-\sqrt{8}\right)}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\)
\(=\frac{-2}{\sqrt{6}}-\frac{1}{\sqrt{6}}\)
\(=-\frac{3}{\sqrt{6}}=\frac{-\sqrt{3}}{\sqrt{2}}\)
c) Ta có: \(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(=\sqrt{\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}+\sqrt{\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{\frac{7-4\sqrt{3}}{4-3}}+\sqrt{\frac{7+4\sqrt{3}}{4-3}}\)
\(=\sqrt{4-2\cdot2\cdot\sqrt{3}+3}+\sqrt{4+2\cdot2\cdot\sqrt{3}+3}\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=\left|2-\sqrt{3}\right|+\left|2+\sqrt{3}\right|\)
\(=2-\sqrt{3}+2+\sqrt{3}\)(Vì \(2>\sqrt{3}>0\))
\(=4\)
d) Ta có: \(\frac{\sqrt{3-\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
\(=\frac{\sqrt{6-2\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\frac{\sqrt{5-2\cdot\sqrt{5}\cdot1+1}\cdot\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}\cdot\left(6+2\sqrt{5}\right)}{4\left(\sqrt{5}+1\right)}\)
\(=\frac{\left|\sqrt{5}-1\right|\cdot\left(5+2\cdot\sqrt{5}\cdot1+1\right)}{2\cdot\left(\sqrt{5}+1\right)\cdot2}\)
\(=\frac{\left(\sqrt{5}-1\right)\cdot\left(\sqrt{5}+1\right)^2}{2\cdot\left(\sqrt{5}+1\right)\cdot2}\)(Vì \(\sqrt{5}>1\))
\(=\frac{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}{4}\)
\(=\frac{5-1}{4}=\frac{4}{4}=1\)
e) Ta có: \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(=\frac{\sqrt{2}-\sqrt{2+\sqrt{3}}}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2+\sqrt{3}}\right)}+\frac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)\left(\sqrt{2}+\sqrt{2-\sqrt{3}}\right)}\)
\(=\frac{\sqrt{2}-\sqrt{2+\sqrt{3}}}{2-\left(2+\sqrt{3}\right)}+\frac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{2-\left(2-\sqrt{3}\right)}\)
\(=\frac{2-\sqrt{4+2\sqrt{3}}}{\sqrt{2}\cdot\left(2-2-\sqrt{3}\right)}+\frac{2+\sqrt{4-2\sqrt{3}}}{\sqrt{2}\cdot\left(2-2+\sqrt{3}\right)}\)
\(=\frac{2-\sqrt{3+2\cdot\sqrt{3}\cdot1+1}}{-\sqrt{6}}+\frac{2+\sqrt{3-2\cdot\sqrt{3}\cdot1+1}}{\sqrt{6}}\)
\(=\frac{-2+\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{6}}+\frac{2+\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{6}}\)
\(=\frac{\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|}{\sqrt{6}}\)
\(=\frac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{6}}\)
\(=\frac{2\sqrt{3}}{\sqrt{6}}=\frac{\sqrt{12}}{\sqrt{6}}=\sqrt{2}\)
f) Ta có: \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
\(=\frac{9+4\sqrt{5}-8\sqrt{5}}{2\left(\sqrt{5}-2\right)}\)
\(=\frac{9-4\sqrt{5}}{2\cdot\left(\sqrt{5}-2\right)}\)
\(=\frac{5-2\cdot\sqrt{5}\cdot2+2}{2\cdot\left(\sqrt{5}-2\right)}\)
\(=\frac{\left(\sqrt{5}-2\right)^2}{2\left(\sqrt{5}-2\right)}\)
\(=\frac{\sqrt{5}-2}{2}\)
Thực hiện phép tính sau
a, \(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
b, \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
c, \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
d, \(\frac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
a) \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)
\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}}\)
\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}}}{\sqrt{3}}\)
\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\left(\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}\right)\cdot3}}{3}\)
\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\dfrac{5}{4}-\dfrac{\sqrt{6}}{2}}}{3}\)
\(=\dfrac{\sqrt{3}+\sqrt{\dfrac{5}{4}-\dfrac{\sqrt{6}}{2}}}{3}+\dfrac{\sqrt{2}}{6}\)
b) \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=...\)
c) \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}=...\)
d) \(\dfrac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{3+\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{3+\sqrt{\left(1+2\sqrt{3}\right)^2}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{3+1+2\sqrt{3}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{3+2\sqrt{3}+1}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\left(\sqrt{3}+1\right)}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\left(\sqrt{3}+1\right)}\cdot\left(\sqrt{6}+\sqrt{2}\right)}{4}\)
\(=\dfrac{\sqrt{3\left(\sqrt{3}+1\right)}\cdot\left(\sqrt{6}+\sqrt{2}\right)}{2}\)
\(=\dfrac{\sqrt{3-\sqrt{3}-1}\sqrt{\left(\sqrt{6}+\sqrt{2}\right)^2}}{2}\)
\(=\dfrac{\sqrt{\left(3-\sqrt{3}-1\right)\cdot\left(\sqrt{6}+\sqrt{2}\right)^2}}{2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(6+2\sqrt{12}+2\right)}}{2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(6+4\sqrt{3}+2\right)}}{2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(8+4\sqrt{3}\right)}}{2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot4\left(2+\sqrt{3}\right)}}{2}\)
\(=\dfrac{\sqrt{\left(4-3\right)\cdot4}}{2}\)
\(=\dfrac{\sqrt{1\cdot4}}{2}\)
\(=\dfrac{2}{2}\)
\(=1\)
a. P= (\(3+\sqrt{2}+\sqrt{6}\))(\(\sqrt{6-3\sqrt{3}}\))
b. A=(\(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\)): (\(\sqrt{6}+11\))
c. B= \(\frac{\sqrt{8-2\sqrt{12}}}{\sqrt{3}-1}\)-\(\sqrt{8}\)
d. C= \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
đ. D=\(\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
e. E= \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
ê. G= \(\sqrt{4+5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
g. H=\(\frac{2\sqrt{4+\sqrt{5+21+\sqrt{80}}}}{\sqrt{10}-\sqrt{2}}\)
i. I=\(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}+\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}\)
k. K=\(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)