tìm m để phương trình sau có duy nhất 1 nghiệm:
\(\sqrt{2x^2+mx}=3-x\)
Bài 4:
a) Tìm m để phương trình sau có nghiệm duy nhất: 2x - mx + 2m - 1 = 0.
b) Tìm m để phương trình sau có vô số nghiệm: mx + 4 = 2x + m2.
c) Tìm m để phương trình sau có nghiệm duy nhất dương: (m2 - 4)x + m - 2 = 0
à bài này a nhớ (hay mất điểm ở bài này) ;v
xinloi cậu tớ muốn giúp lắm mà tớ ngu toán:)
a)Ta có \(2x-mx+2m-1=0\\ =>x\left(2-m\right)+2m-1=0\)
Để pt có nghiệm duy nhất thì \(a\ne0=>2-m\ne0\\=>m\ne2\)
b)Ta có \(mx+4=2x+m^2\\ =>mx+4-2x+m^2=0\\ =>\left(m-2\right)x=m^2-4\)
Để pt vô số nghiệm thì \(\left\{{}\begin{matrix}m-2=0\\m^2-4=0\end{matrix}\right.=>\left\{{}\begin{matrix}m=2\\m=\pm2\end{matrix}\right.\)\(=>m=2\)
c)Để pt có nghiệm duy nhất thì \(m^2-4\ne0>m\ne\pm2\)
Chắc vậy :v
Cho phương trình \(\dfrac{3x^2-1}{\sqrt{2x-1}}=\sqrt{2x-1}+mx\) . tìm m để phương trình có nghiệm duy nhất
a) Tìm m để phương trình sau có nghiệm duy nhất: 2x - mx + 2m - 1 = 0
b) Tìm m để phương trình sau có vô số nghiệm: mx + 4 = 2x + m2
c) Tìm m để phương trình sau có nghiệm duy nhất dương: (m2 - 4)x + m -2 = 0
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!! PLEASE!!!
a) 2x-mx+2m-1=0
\(\Leftrightarrow x\left(2-m\right)=1-2m\left(1\right)\)
*Nếu \(m=2\)thay vào (1) ta được:
\(x\left(2-2\right)=1-2\cdot2\Leftrightarrow0x=-3\)
Với \(m=\frac{1}{2}\) ,pt trên vô nghiệm.
*Nếu \(m\ne2\)thì phương trình (1) có nghiệm \(x=\frac{1-2m}{2-m}\)
Vậy \(m\ne2\)thì phương trình có nghiệm duy nhất \(x=\frac{1-2m}{2-m}\)
b)c) mình biến đổi thôi, phần lập luận bạn tự lập luận nhé
b)\(mx+4=2x+m^2\Leftrightarrow mx-2x=m^2-4\Leftrightarrow x\left(m-2\right)=\left(m-2\right)\left(m+2\right)\)
*Nếu \(m\ne2\).....pt có ngiệm x=m+2
*Nếu \(m=2\)....pt có vô số nghiệm
Vậy ....
c)\(\left(m^2-4\right)x+m-2=0\Leftrightarrow\left(m-2\right)\left(m+2\right)x=-\left(m-2\right)\)
Nếu \(m=2\).... pt có vô số nghiệm
Nếu \(m=-2\)..... pt vô nghiệm
Nếu \(m\ne\pm2\).... pt có nghiệm \(x=-m-2\)
Để nghiệm \(x=-m-2\)dương \(\Leftrightarrow m+2< 0\Leftrightarrow m< -2\ne\pm2\)
Vậy m<-2
cho phương trình:
mx - 3 = 2x =2m
1) tìm m để phương trình vô nghiệm, phương trình có nghiệm
2) khi phương trình có nghiệm duy nhất :
a) tìm m nguyên để phương trình có nghiệm nguyên
b) tìm m để phương trình có nghiệm x>0
c) tìm m để phương trình có nghiệm x<0
Cho phương trình: mx² - 2x + m - 1 = 0 Tìm m để phương trình có nghiệm duy nhất Tìm m để phương trình có 2 nghiệm phân biệt Tìm m để phương trình có hai nghiệm x1,x2 thoả 3x1x2 - 2x1 - 2x2 = -2 Tìm hệ thức liên hệ giữa x1,x2 không phụ thuộc vào m
a: Th1: m=0
=>-2x-1=0
=>x=-1/2
=>NHận
TH2: m<>0
Δ=(-2)^2-4m(m-1)=-4m^2+4m+4
Để phương trình có nghiệm duy nhất thì -4m^2+4m+4=0
=>\(m=\dfrac{1\pm\sqrt{5}}{2}\)
b: Để PT có hai nghiệm phân biệt thì -4m^2+4m+4>0
=>\(\dfrac{1-\sqrt{5}}{2}< m< \dfrac{1+\sqrt{5}}{2}\)
4) Tìm a thuộc Z để phương trình sau có nghiệm duy nhất là số nguyên
a^2x+2x=3(a+1-ax)
5) Tìm m để phương trình: (m^2+5)x=2-2mx
có nghiệm duy nhất đạt giá trị lớn nhất
6) Tìm tất cả các số thực a không âm sao cho phương trình: (a^2-4)x=a^2-ma+16 (ẩn x)
có nghiệm duy nhất là số nguyên
Cho phương trình mx-2x+3=0
a)Giải phương trình với m=-4
b)Tìm giá trị của m để phương trình có nghiệm x=2
c)Tìm giá trị của m để pt có nghiệm duy nhất
d)Tìm giá trị nguyên của m để pt có nghiệm nguyên
a, mx - 2x + 3 = 0
m = -4
<=> -4x - 2x + 3 = 0
<=> -6x = -3
<=> x = 1/2
b, mx - 2x + 3 = 0
x = 2
<=> 2m - 2.2 + 3 =0
<=> 2m - 1 = 0
<=> m = 1/2
Cho hệ phương trình x + my =2m hoặc mx + y = 1-m (m là tham số )
1.Tìm các giá trị của m để hệ phương trình :
a)Có nghiệm duy nhất. Tìm nghiệm duy nhất đó
b)Vô nghiệm
c)Vô số nghiệm
2.Trong trường hợp hệ phương trình có nghiệm duy nhất (x,y)
a)Hãy tìm giá trị m nguyên để x và y cùng nguyên
b)tìm hệ thức liên hệ giữa x và y không phụ thuộc m
cho phương trình: \(m\sqrt{2x}-\left(\sqrt{2}-1\right)^2=\sqrt{2}-x+m^2\)
a/Tìm m để phương trình có nghiệm dương duy nhất
b/tìm m để phương trình có nghiệm \(x=3-\sqrt{2}\)
Bài 9: Cho phương trình ẩn x:
mx 2 m 3x − + = .
a, Tìm m để phương trình đã cho nhận
1
x
2
=
làm nghiệm.
b, Tìm m để phương trình đã cho có nghiệm duy nhất và tìm nghiệm duy nhất đó theo m.
mx−2+m=3xmx−2+m=3x
a) Phương trình nhận x=12x=12 làm nghiệm
→m⋅12−2+m=3⋅12→m⋅12−2+m=3⋅12
→32m=72→32m=72
→m=73→m=73
b) mx−2+m=3xmx−2+m=3x
→(m−3)x=2−m→(m−3)x=2−m
Phương trình có nghiệm duy nhất
→m−3≠0→m−3≠0
→m≠3→m≠3
Khi đó: