A=(căn củax/3+căn củax+2x/9-x):(cănx-1/
x-3căn của x-2/căn của x) ( x>0,x khác 9,x khác 25
cho A=cănx/căn(x+3)+2cănx/căn(x-3)-3x+9/x-9,với x lớn hơn bằng 0,x khác 9
a rút gọn biểu thức A
b tìm x để a=1/3
c tìm giá trị lớn nhất của A
Bạn vui lòng viết đề bằng công thức toán để được hỗ trợ tốt hơn.
`a)A=sqrtx/(sqrtx+3)+(2sqrtx)/(sqrtx-3)-(3x+9)/(x-9)(x>=0,x ne 9)`
`=(sqrtx(sqrtx-3)+2sqrtx(sqrtx+3)-3x-9)/(x-9)`
`=(x-3sqrtx+2x+6sqrtx-3x-9)/(x-9)`
`=(3sqrtx-9)/(x-9)`
`=(3(sqrtx-3))/((sqrtx-3)(sqrtx+3))`
`=3/(sqrtx+3)`
`b)A=1/3`
`<=>3/(sqrtx+3)=1/3`
`<=>sqrtx+3=9`
`<=>sqrtx=6`
`<=>x=36(tm)`
`c)A=3/(sqrtx+3)`
`sqrtx+3>=3>0`
`=>A<=3/3=1`
Dấu "=" xảy ra khi `x=0`
Cho hàm số: y= f(x) = -2x+5 (1)
a)Vẽ đô thị hàm số (1) trên mặt phẳng tọa độ
b)Tìm tọa độ giao điểm I của hai hàm số y= -2x+5 và y= x-1 bằng phương pháp tính
M=(1/căn x +3 +cănx+9/x-9).cănx/2 với x>hoặc=0,x khác 9. tìm x thuộc Z để M có giá trị là số tự nhiên lớn nhất
\(M=\dfrac{1}{\sqrt{x}+3}+\dfrac{\sqrt{x}+9}{x-9}=\dfrac{1}{\sqrt{x}+3}+\dfrac{\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}-3+\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{2\sqrt{x}+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2}{\sqrt{x}-3}\)
Để M là số tự nhiên \(\Rightarrow\left\{{}\begin{matrix}2⋮\sqrt{x}-3\\\sqrt{x}-3>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\sqrt{x}-3\in\left\{2;1;-1;-2\right\}\\x>9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{25;16;4;1\right\}\\x>9\end{matrix}\right.\Rightarrow x\in\left\{25;16\right\}\)
Thế vào M,ta đường \(\left\{{}\begin{matrix}x=25\Rightarrow M=1\\x=16\Rightarrow M=2\end{matrix}\right.\)
\(\Rightarrow M\) có giá trị là số tự nhiên lớn nhất là \(2\) khi \(x=16\)
Cho hai biểu thức P=2 cănx / căn x +3 cộng căn x / căn x-3 trừ 3x+3/ x-9 và Q= căn x +1/ căn x -3 (với x>_ 0; x#9)
1. Rút gọn P và tính M=P/Q
2. Cho biểu thức A=x.M+ 4x+7/cănx+3. Tìm GTNN của A
Cho biểu thức M = căn x/ cănx -2 + 4 cănx -4/ căn x.( cănx - 2 ) với x>0 và x khác 4
a) rút gọn biểu thức M
b) tính giá trị của M khi x= 3+ 2 căn2
a: \(M=\dfrac{x+4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
cho a=x+ căn x+10/x-9+1/ căn x -3 và b=căn x+1(với x lớn hơn hoặc bằng 0 x khác 9) tìm giá trị của x để a>b
\(A=\dfrac{x+\sqrt{x}+10+\sqrt{x}+3}{x-9}=\dfrac{x+2\sqrt{x}+13}{x-9}\)
Để A>B thì A-B>0
=>\(\dfrac{x+2\sqrt{x}+13}{x-9}-\sqrt{x}-1>0\)
=>\(\dfrac{x+2\sqrt{x}+13-\left(x-9\right)\left(\sqrt{x}+1\right)}{x-9}>0\)
=>\(\dfrac{x+2\sqrt{x}+13-x\sqrt{x}-x+9\sqrt{x}+9}{x-9}>0\)
=>\(\dfrac{-x\sqrt{x}+11\sqrt{x}+22}{x-9}>0\)
TH1: \(\left\{{}\begin{matrix}-x\sqrt{x}+11\sqrt{x}+22>0\\x-9>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}< 4.05\\x>9\end{matrix}\right.\Leftrightarrow9< x< 16.4025\)
TH2: \(\left\{{}\begin{matrix}-x\sqrt{x}+11\sqrt{x}+22< 0\\x-9< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>4.05\\0< x< 9\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Giải pt
a)căn x^2-4x+4=x+3
a)căn 9x^2+12x+4=4x
a)căn x^2-8x+16=4-x
a)căn 9x^2-6x+1-5x=2
a)căn 25-10x+x^2-2x=1
a)căn 25x^2-30x+9=x-1
a)căn x^2-6x+9-x-5=0
a)2x^2-căn 9x^2-6x+1=-5
b)căn x+5=căn 2x
b)căn 2x-1=căn x-1
b)căn 2x+5=căn 1-x
b)căn x^2-x=căn 3-x
b)căn 3x+1=căn 4x-3
b)căn x^2-x=3x-5
b)căn 2x^2-3=căn 4x-3
b)căn x^2-x-6=căn x-3
Giúp mình với ạ
a) \(\sqrt[]{x^2-4x+4}=x+3\)
\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)
\(\Leftrightarrow\left|x-2\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)
\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)
\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)
\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)
Giải pt (1)
\(\Delta=9+32=41>0\)
Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)
Giải pt (2)
\(\Delta=9+48=57>0\)
Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)
Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)
a) Căn 2x^2-3x-11= căn x^2-1
b) Căn 2x^2-3x+1= căn x+5
c) (x-1).cẵnx^2-3x=0
d) x^2-4x-10-3 căn(x+2).(x-6)=0
e) Căn x+căn5-x+cănx.(5-x)=0
Tham khảo thanh này để soạn đề chính xác hơn nha :vvv
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)(1)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức (1), ta được:
\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)
Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)
B= ( 1/căn bậc 2 của x - 2 - 2/x-2 căn x ) : căn bậc 2 của x -3/x+2 căn x
Với x > 0 ; x khác 4 ; x khác 9
A,rút gọn B
B, tìm x nguyên để B nhận giá trị nguyên'
Ai làm được làm nhanh giúp mình với