Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hello sun
Xem chi tiết
Trên con đường thành côn...
24 tháng 8 2021 lúc 12:05

Bạn xem lại đề nhé. Theo mình nghĩ thì không có căn 4 ở sau dấu.... Đây là vô hạn mà.

undefined

Kiều Trang
Xem chi tiết
Big City Boy
Xem chi tiết
Minh Hiếu
24 tháng 9 2021 lúc 5:34

Ta có: 

\(R=\)\(\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)

\(=\)\(\dfrac{\sqrt{10}+3\sqrt{2}}{5+\sqrt{5}}+\dfrac{\sqrt{10}-3\sqrt{2}}{5-\sqrt{5}}\)

\(=\dfrac{4\sqrt{2}}{\sqrt{5}\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)

\(=\dfrac{4\sqrt{2}}{4\sqrt{5}}=\sqrt{\dfrac{2}{5}}\)

Làm câu S tương tự như này rồi đối chiếu kết quả nha

Khôi Võ
Xem chi tiết
Phạm Ngọc Thạch
7 tháng 6 2017 lúc 19:38

Bài này may mình có thi qua rùi.

Đặt

\(A=\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}}>0\)

=> \(A^2=4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}\)

=> A2 - A = 4           

=> A2 - A - 4 = 0

Giải phương trình được 2 nghiệm:

\(A_1=\frac{1+\sqrt{17}}{2}\)

\(A_2=\frac{1-\sqrt{17}}{2}< 0\)( loại vì A>0)

Vậy \(A=\frac{1+\sqrt{17}}{2}< \frac{1+\sqrt{25}}{2}=\frac{1+5}{2}=3\)

Kết luận: \(\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}}< 3\)

-------------

Chắc bạn ko hiểu chỗ A2 - A = 4 nhỉ?

Triệu Minh Khôi
10 tháng 6 2017 lúc 9:07

SO SÁNH4+4+4+...+4

 VỚI 3

SO SÁNH4+4+4+...+4

 VỚI 3

linh nguyen
10 tháng 6 2017 lúc 15:16

mấy bà kia sai hết rồi phải như thế này 

A = 4 + 4 + 0 - 8 +4

thế mới là đúng

Còi Ham Chơi
Xem chi tiết
Lux
Xem chi tiết
Lux
25 tháng 7 2020 lúc 20:40

100 dấu căn nha

Khách vãng lai đã xóa
Trần Phúc Khang
26 tháng 7 2020 lúc 13:12

\(\sqrt{4+\sqrt{4+\sqrt{4+\sqrt{4+...}}}}< \sqrt{6+\sqrt{6+\sqrt{6+...\sqrt{6+\sqrt{9}}}}}\)(100 dấu căn)

=> \(VT< \sqrt{6+\sqrt{6+\sqrt{6+...\sqrt{6+3}}}}=\sqrt{6+\sqrt{6+\sqrt{6+..\sqrt{6+\sqrt{9}}}}}\)(99 dấu căn)

=> \(VT< \sqrt{6+3}=3\)

Khách vãng lai đã xóa
Big City Boy
Xem chi tiết
Trình
Xem chi tiết
alibaba nguyễn
20 tháng 6 2017 lúc 10:53

Bài này giải nhiều rồi. Thôi m trình bày thêm 1 lần nữa vậy. Lần sau tìm câu hỏi tương tự nha b.

Ta có:

\(A=\sqrt{4+\sqrt{4+\sqrt{4....}}}\) vô số dấu căn 

\(\Leftrightarrow A^2=4+\sqrt{4+\sqrt{4+\sqrt{4....}}}\)

\(\Leftrightarrow A^2-A-4=0\)

\(\Leftrightarrow\orbr{\begin{cases}A=\frac{1-\sqrt{17}}{2}\left(l\right)\\A=\frac{1+\sqrt{17}}{2}=2,56< 3\end{cases}}\)

Từ đây ta có \(\sqrt{4+\sqrt{4+\sqrt{4....}}}< 3\)

Trình
20 tháng 6 2017 lúc 16:42

mỗi lần mình đều xem hết danh sách câu hỏi tương tự mà không thấy.

Cảm ơn bạn nha!

Trình
20 tháng 6 2017 lúc 16:50

mà tại sao a2 - a - 4 =0

99 dấu căn của 4 trừ 100 dấu căn của 4 sao = 0?

....
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 15:19

a: Ta có: \(P=\left(\dfrac{x-2\sqrt{x}+4}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{x+4}{x-4}\right)\)

\(=\dfrac{x-2\sqrt{x}+4}{\sqrt{x}-2}:\dfrac{x+4\sqrt{x}+4+x-2\sqrt{x}-x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x-2\sqrt{x}+4}{1}\cdot\dfrac{\sqrt{x}+2}{x+2\sqrt{x}}\)

\(=\dfrac{x-2\sqrt{x}+4}{\sqrt{x}}\)

b: \(P-2=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}}=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}}>0\forall x\) thỏa mãn ĐKXĐ

nên P>2