Chứng minh rằng nếu \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)với x,y khác 0 thì \(\frac{a}{x}=\frac{b}{y}\)
Chứng minh rằng nếu \(\left(a^2+b^2+b^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)với x,y,z khác 0 thì \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
help
Chi tham khao tai day:
Câu hỏi của Vương Nguyễn Thanh Triều - Toán lớp 8 - Học toán với OnlineMath
Chứng minh rằng: Nếu a(y + z) = b(z + x) = c(x + y), trong đó a; b; c là các số khác nhau và khác 0 thì:
\(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
Bài làm:
Vì a,b,c khác 0 nên:
Ta có: \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)
\(\Leftrightarrow\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\) (1) (chia cả 3 vế cho abc)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\left(1\right)=\frac{x+y-z-x}{ab-ca}=\frac{y+z-x-y}{bc-ab}=\frac{z+x-y-z}{ca-bc}\)
\(=\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
=> đpcm
Bài làm:
Vì a,b,c khác 0 nên:
Ta có: a(y+z)=b(z+x)=c(x+y)�(�+�)=�(�+�)=�(�+�)
⇔y+zbc=z+xca=x+yab⇔�+���=�+���=�+��� (1) (chia cả 3 vế cho abc)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
(1)=x+y−z−xab−ca=y+z−x−ybc−ab=z+x−y−zca−bc(1)=�+�−�−���−��=�+�−�−���−��=�+�−�−���−��
=y−za(b−c)=z−xb(c−a)=x−yc(a−b)=�−��(�−�)=�−��(�−�)=�−��(�−�)
=> đpcm
Chứng minh rằng các biểu thức sau bằng nhau
a. \(\left(a^2-b^2\right)\left(c^2-d^2\right)\)và \(\left(ac+bd\right)^2-\left(ad+bc\right)^2\)
b. Nếu \(x^2+y^2+z^2\) và \(xy+xz+yz\) thì x = y = z
a: Ta có: \(\left(ac+bd\right)^2-\left(ad+bc\right)^2\)
\(=a^2c^2+b^2d^2+2abcd-a^2d^2-b^2c^2-2abcd\)
\(=a^2\left(c^2-d^2\right)-b^2\left(c^2-d^2\right)\)
\(=\left(a^2-b^2\right)\left(c^2-d^2\right)\)
Chứng minh rằng:
Nếu \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cx\right)^2\) thì \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\).
\(\text{Đặt }\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}=k \Rightarrow\left\{{}\begin{matrix}a=kx\\b=ky\\c=kz\end{matrix}\right.\\\Rightarrow\left(ax+by+cz\right)^2=\left(kx^2+ky^2+kz^2\right)^2\\ =\left(kx^2+ky^2+kz^2\right)\left(kx^2+ky^2+kz^2\right)\\ =\left(x^2+y^2+z^2\right)\left(k^2x^2+k^2y^2+k^2z^2\right) \\ =\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\left(đpcm\right)\)
Cho a,b,c là ba số không âm thỏa mãn \(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)
Chứng minh rằng:\(\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)
\(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)
\(\Rightarrow\frac{acy-bcx}{c^2}=\frac{bcx-abz}{b^2}=\frac{abz-acy}{a^2}=\frac{0}{a^2+b^2+c^2}=0\)
\(\Rightarrow\hept{\begin{cases}ay-bx=0\\cx-az=0\\bz-cy=0\end{cases}}\)
\(\Rightarrow\left(ay-bx\right)^2+\left(cx-az\right)^2+\left(bz-ay\right)^2=0\)
\(\Rightarrow a^2y^2-2axby+b^2x^2+a^2z^2-2axcz+c^2x^2+b^2z^2-2bycz\)
\(+c^2y^2=0\)
\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)
\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
\(\Rightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)
Chứng minh rằng \(\left(a^2+b^2\right).\left(x^2+y^2\right)=\left(ax+by\right)^2+\left(ay-bx\right)^2\)
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)(1)
\(\left(ax+by\right)^2+\left(ay-bx\right)^2\)
\(=a^2x^2+2axby+b^2y^2+a^2y^2-2aybx+b^2x^2\)
\(=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)(2)
Từ (1) và (2) ta có \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2+\left(ay-bx\right)^2\)( đpcm )
\(\left(a^2+b^2\right)+\left(x^2+y^2\right)=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
\(\left(ax+by\right)^2+\left(ay-bx\right)^2=a^2x^2+2axby+b^2y^2+a^2y^2-2aybx+b^2x^2\)
\(=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
Suy ra : \(\left(a^2+b^2\right)+\left(x^2+y^2\right)=\left(ax+by\right)^2+\left(ay+bx\right)^2\left(đpcm\right)\)
Chứng minh rằng:
a) \(\left(a^2-b^2\right)\left(c^2-d^2\right)=\left(ac+bd\right)^2-\left(ad+bc\right)^2\)
b) Nếu \(x^2+y^2+z^2=xy+xz+yz\) thì x=y=z
a/ \(\left(a^2-b^2\right)\left(c^2-d^2\right)=a^2c^2-a^2d^2-b^2c^2+b^2d^2\)
\(=\left(a^2c^2+2abcd+b^2d^2\right)-\left(a^2d^2+2abcd+b^2c^2\right)\)
\(=\left(ac+bd\right)^2-\left(ad+bc\right)^2\)
b/ \(x^2+y^2+z^2=xy+yz+zx\)
\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2zx\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
\(\Leftrightarrow x=y=z\)
Cho x>0,y<0 và x+y=1/ Rút gọn biểu thức:
\(A=\frac{y-x}{xy}:\left[\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{x^2-y^2}\right]\)
Chứng minh rằng A<-4
chắc =1 đó chỉ cần đọc kĩ đề thôi
1/Cho các số thực dương. Chứng minh:\(ax+by+cz+2\sqrt{\left(ab+bc+ca\right)\left(xy+yz+zx\right)}\le\left(a+b+c\right)\left(x+y+z\right)\)
2/Cho 3 số thực tùy ý.Chứng minh: \(2\left(x+y+z\right)\left(x^2+y^2+z^2\right)\le4xyz+\left(x^2+y^2+z^2\right)^{\frac{3}{2}}\)
3/ Với các số thực dương. Chứng minh : \(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\ge1\)
4/ Với cácsố thực dương thỏa abc=1.Chứng minh:\(\left(1+\frac{2x}{y}\right)\left(1+\frac{2y}{z}\right)\left(1+\frac{2z}{x}\right)\ge\left(2+x\right)\left(2+y\right)\left(2+z\right)\)
Bai 1: Ap dung BDT Bunhiacopxki ta co:
\(ax+by+cz+2\sqrt {(ab+ac+bc)(xy+yz+xz)} \)
\(≤ \sqrt {(a^2+b^2+c^2)(x^2+y^2+z^2)} + \sqrt {(ab+ac+bc)(xy+yz+zx)}+\sqrt {(ab+ac+bc)(xy+yz+zx)}\)
\(≤ \sqrt {(a^2+b^2+c^2+2ab+2ac+2bc)(x^2+y^2+z^2+2xy+2yz+2zx)}\)
\(= (a+b+c)(x+y+z)\)
=> \(Q.E.D\)
Tiep bai 4:Ta co:
BDT <=> \((2+y^2z)(2+z^2x)(2+x^2y)≥(2+x)(2+y)(2+z)\)
Sau khi khai trien con: \(2(z^2x+y^2z+x^2y)+x^2z+z^2y+y^2x≥xy+yz+zx+2x+2y+2z \)
Ap dung BDT Cosi ta co:
\(z^2x+x ≥ 2zx \) <=> \(z^2x≥2zx-x\)
Lam tuong tu ta co: \(2(z^2x+y^2z+x^2y)≥4xy+4yz+4zx-2x-2y-2z \)(1)
\(x^2z+{1\over z}≥2x \) <=> \(x^2z≥2x-xy \) (do xyz=1)
Lam tuong tu ta co: \(x^2z+z^2y+y^2x≥ 2y+2z+2x-xy-yz-zx\)(2)
Cong (1) voi (2) ta co: VT\(≥ 3(xy+yz+zx)\)(*)
Voi cach lam tuong tu ta cung duoc: VT\(≥ 3(x+y+z) \)(**)
Tu (*) va (**) suy ra : \(3 \)VT \(≥ 6(x+y+z)+3(xy+yz+zx) \)
<=> VT \(≥ 2(x+y+z)+xy+yz+zx\)
=> \(Q.E.D\)