Những câu hỏi liên quan
Phạm Đạt
Xem chi tiết
Ngô Thùy Dung (>^-^
26 tháng 7 2019 lúc 12:50

.

Bình luận (0)
Mo Nguyễn Văn
6 tháng 9 2019 lúc 19:47

Bình luận (0)
Nguyên Hưng Trần
6 tháng 9 2019 lúc 20:09

a.\(\left(x^2-y^2-z^2\right)=\left(x-y\right)^2-2z\left(x-y\right)+z^2=x^2-2xy+y^2-2zx+2zy+z^2\)

b.\(\left(x+y-z\right)^2=\left(x+y\right)^2-2z\left(x+y\right)+z^2=x^2+2xy+y^2-2zy-2zx+z^2\)

Bình luận (0)
mãi  mãi  là em
Xem chi tiết
Lại Trí Dũng
11 tháng 11 2017 lúc 16:31

x2 +y2 +z2 -2xy-2zx-2yz=(x-y-z)2 -4yz=(x-y-z)2 - \(2.\sqrt{yz^2}\)=\(\left(x-y-z-2\sqrt{yz}\right)+\left(x-y-z+2\sqrt{yz}\right)\)

x2 -2xy - y2 -z2 =(x-y)2 -z2 =(x-y-z)(x-y+z)

Bình luận (0)
Vũ Thị Chung
Xem chi tiết
Pham Van Hung
7 tháng 12 2018 lúc 12:57

\(\frac{x^2+y^2+z^2-2xy-2yz+2zx}{x^2-2xy+y^2-z^2}=\frac{\left(x-y+z\right)^2}{\left(x-y\right)^2-z^2}=\frac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}=\frac{x-y+z}{x-y-z}\)

Bình luận (0)
Vy
Xem chi tiết
Anh Thư
26 tháng 7 2016 lúc 17:24

Xét vế trái ta có: x^2 + y^2 + z^2 + 2xy + 2yz + 2xz

                       =x^2 + 2xy + y^2 + 2yz + 2xz +z^2

                       =(x+y)^2 + 2(x+y)z +z^2

                       =(x+y+z)^2

Bình luận (0)
Kiệt Nguyễn
Xem chi tiết
Nguyễn Minh Đăng
6 tháng 8 2020 lúc 10:56

Ta có: \(\frac{x^2}{1+2yz}+\frac{y^2}{1+2zx}+\frac{z^2}{1+2xy}\)

\(\ge\frac{\left(x+y+z\right)^2}{3+2\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{3+2\left(x^2+y^2+z^2\right)}\)

\(=\frac{\left(x+y+z\right)^2}{3+2}=\frac{\left(x+y+z\right)^2}{5}\)

Mà \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=3\)

Nên thay vào ngược dấu

=> ch bt lm

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
6 tháng 8 2020 lúc 14:17

Nói chung khá đơn giản. Em chứng minh bất đẳng thức sau đây là được.

\(\frac{x^2}{1+2yz}=\frac{x^2}{x^2+\left(y^2+z^2+2yz\right)}=\frac{x^2}{x^2+\left(y+z\right)^2}\ge\frac{1}{25}\cdot\frac{17x^2-y^2-z^2}{x^2+y^2+z^2}\)

Có thể chứng minnh nó bằng cách: \(f\left(x,y,z\right)=\frac{x^2}{x^2+\left(y+z\right)^2}-\frac{1}{25}\cdot\frac{17x^2-y^2-z^2}{x^2+y^2+z^2}\)

Ta chứng minhL \(f\left(x,y,z\right)\ge f\left(x,\frac{y+z}{2},\frac{y+z}{2}\right)\ge0\) (quy đồng phát là ra nhân tử (y-z)^2 nên hiển nhiên:v)

Tương tự cộng lại. Xong.

Cách Cauchy-SChwarz:

Chứng minh theo trình tự: \(\Sigma\frac{x^2}{x^2+\left(y+z\right)^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{\Sigma x^2\left[x^2+\left(y+z\right)^2\right]}\ge\frac{3}{5}\)

Bình luận (0)
 Khách vãng lai đã xóa
zZz Cool Kid_new zZz
6 tháng 8 2020 lúc 14:54

Mạnh dạn nhân lên xài Cauchy Schwarz thôi ^_^

\(\frac{x^2}{1+2yz}+\frac{y^2}{1+2zx}+\frac{z^2}{1+2xy}\)

\(=\frac{x^4}{x^2+2x^2yz}+\frac{y^4}{y^2+2y^2zx}+\frac{z^4}{1+2z^2xy}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+2xyz\left(x+y+z\right)}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+\frac{2\left(xy+yz+zx\right)^2}{3}}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+\frac{2\left(x^2+y^2+z^2\right)^2}{3}}=\frac{3}{5}\)

Đẳng thức xảy ra tại x=y=z=\(\frac{1}{\sqrt{3}}\)

Bình luận (0)
 Khách vãng lai đã xóa
Anh Nguyen
Xem chi tiết
Unruly Kid
13 tháng 12 2017 lúc 16:26

Áp dụng BĐT Cauchy-Schwarz, ta có:

\(VT\ge\dfrac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}=\dfrac{9}{\left(x+y+z\right)^2}=9\)

Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)

Bình luận (1)
dia fic
Xem chi tiết
Xem chi tiết
Trương Minh Nghĩa
8 tháng 12 2021 lúc 16:25

Ap dụng bất đẳng thức BDT Caucchy Schwarz ta có :

\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2zx}+\frac{z^2}{z^2+2xy}\)

\(=\frac{\left(x+y+z\right)^2}{x^2+2yz+y^2+2zx+z^2+2xy}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

Bình luận (0)
 Khách vãng lai đã xóa
Tạ Thu Hương
Xem chi tiết
Nguyễn Ngọc Lộc
20 tháng 7 2020 lúc 16:18

a, b, nhân vào là ra à

c, nghe cứ là lạ

d, cũng nhân là ra hà

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5\)

Bình luận (0)
Nguyễn Lê Phước Thịnh
20 tháng 7 2020 lúc 16:24

a) Ta có: \(VT=\left(x-y-z\right)^2\)

\(=\left(x-y-z\right)\left(x-y-z\right)\)

\(=x^2-xy-xz-yx+y^2+yz-zx+zy+z^2\)

\(=x^2+y^2+z^2-2xy+2yz-2xz\)

=VP(đpcm)

b) Ta có: \(VT=\left(x+y-z\right)^2\)

\(=\left(x+y-z\right)\left(x+y-z\right)\)

\(=x^2+xy-xz+yx+y^2-yz-zx-zy+z^2\)

\(=x^2+y^2+z^2+2xy-2yz-2zx\)

=VP(đpcm)

c) Sửa đề: Chứng minh \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4-y^4\)

Ta có: \(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

=VP(đpcm)

d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5\)

=VP(đpcm)

Bình luận (0)