\(1.\)Tìm x biết :
\(a)\left(2x-1\right).\left(y-2\right)=13\)
\(b)x.\left(y-2\right)=16\)
tìm tập xác định của hàm số
a) \(y=log_2\left(x^2-16\right)\)
b) \(y=log_3\left(x^2-2x+1\right)\)
c) \(y=log_2\left(2-x\right)\left(x+1\right)\)
d) \(y=log\left(x^2-1\right)\left(X+5\right)\)
ĐKXĐ:
a.
\(x^2-16>0\Rightarrow\left[{}\begin{matrix}x>4\\x< -4\end{matrix}\right.\)
b.
\(x^2-2x+1>0\Rightarrow\left(x-1\right)^2>0\Rightarrow x\ne1\)
c.
\(\left(2-x\right)\left(x+1\right)>0\Rightarrow-1< x< 2\)
d.
\(\left(x^2-1\right)\left(x+5\right)>0\Rightarrow\left[{}\begin{matrix}-5< x< -1\\x>1\end{matrix}\right.\)
giải hệ pt :
a, \(\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2\right)=13\\\left(x +y\right)\left(x^2-y^2=25\right)\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}2x^2+x-\dfrac{1}{y}=2\\y-y^2x-2y^2=-2\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}x^3y\left(1+y\right)+x^2y^2\left(2-y\right)+xy^3-30=0\\x^2y+x\left(1+y+y^2+y-11=0\right)\end{matrix}\right.\)
a, \(\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2\right)=13\\\left(x+y\right)\left(x^2-y^2\right)=25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x-y\right)\left(x^2+y^2\right)=26\\\left(x-y\right)\left(x+y\right)^2=25\end{matrix}\right.\)
Trừ vế theo vế \(pt\left(1\right)\) cho \(pt\left(2\right)\) ta được:
\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2-2xy\right)=1\)
\(\Leftrightarrow\left(x-y\right)^3=1\)
\(\Leftrightarrow x-y=1\)
Khi đó hệ trở thành:
\(\left\{{}\begin{matrix}x^2+y^2=13\\\left(x+y\right)^2=25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=13\\13+2xy=25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=13\\2xy=12\end{matrix}\right.\)
Cộng vế theo vế 2 phương trình:
\(\left(x+y\right)^2=25\)
\(\Leftrightarrow x+y=\pm5\)
TH1: \(x+y=5\)
Ta có hệ: \(\left\{{}\begin{matrix}x-y=1\\x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
TH2: \(x+y=-5\)
Ta có hệ: \(\left\{{}\begin{matrix}x-y=1\\x+y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}2x^2+x-\dfrac{1}{y}=2\\y-y^2x-2y^2=-2\end{matrix}\right.\)
ĐK: \(y\ne0\)
\(\left\{{}\begin{matrix}2x^2+x-\dfrac{1}{y}=2\\y-y^2x-2y^2=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+x-\dfrac{1}{y}=2\\\dfrac{1}{y}-x-2=-\dfrac{2}{y^2}\end{matrix}\right.\)
Đặt \(\dfrac{1}{y}=t\), hệ trở thành:
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+x-t=2\\2t^2+t-x=2\end{matrix}\right.\)
\(\Rightarrow\left(x-t\right)\left(x+t+1\right)=0\)
\(\Leftrightarrow...\)
Tìm x biết: \(\frac{4}{\left(x+2\right).\left(x+6\right)}+\frac{7}{\left(x+6\right).\left(x+13\right)}=\frac{2x+1}{\left(x+2\right).\left(x+16\right)}-\frac{3}{\left(x+13\right).\left(x+16\right)}\)
Vế trái: 4/(x+2).(x+6)+7/(x+6).(x+13)
<=>1/x+2 -1/x+6 +1/x+6 -1/x+13
<=>1/x+2-1/x+13
=> 1/x+2-1/x+13=2x+1/(x+2).(x+16) -3/(x+13).(x+16)
<=>1/x+2 - 1/x+13 + 1/x+13 - 1/x+16=2x+1/(x+2).(x+16)
<=>1/x+2 - 1/x+16=2x+1/(x+2).(x+16)
<=> 14/(x+2).(x+16)= 2x+1/(x+2).(x+16)
<=> 2x+1=14
<=> 2x=14-1
<=> 2x=13
<=> x=13:2
<=> x=13/2
Vậy x=13/2
Chúc bạn học tốt
Tìm x, y biết :
\(\left|x+3\right|+\left|x-1\right|=\dfrac{16}{\left|y-2\right|+\left|y+2\right|}\)
Ta có: \(\left|x+3\right|+\left|x-1\right|=\left|x+3\right|+\left|1-x\right|\ge\left|x+3+1-x\right|=4\)
\(\left|y-2\right|+\left|y+2\right|=\left|2-y\right|+\left|y+2\right|\ge\left|2-y+y+2\right|=4\)
\(\Rightarrow\dfrac{16}{\left|y-2\right|+\left|y+2\right|}\le\dfrac{16}{4}=4\Rightarrow\left|x+3\right|+\left|x-1\right|\ge\dfrac{6}{\left|y-2\right|+\left|y+2\right|}\)
Dấu '=' xảy ra <=> (x+3)(1-x)\(\ge0\) và (2-y)(y+2)\(\ge0\)
Vì x,y \(\in Z\Rightarrow\left\{{}\begin{matrix}x\in\left\{-3;-2;-2;0;1\right\}\\y\in\left\{-2;-1;0;1;2\right\}\end{matrix}\right.\)
bài 1 tìm x biết
a)\(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=\left(x+2\right)-\left(x-5\right)\)
b)\(3xy\left(x+y\right)-\left(x+y\right)\left(x^2+y^2+2xy\right)+y^3=27\)
\(\left\{{}\begin{matrix}\sqrt{x+2}\left(x+3\right)=\sqrt{y}\left[\sqrt{y\left(x+2\right)}+1\right]\\x^2+\left(y+1\right)\left(2x-y+5\right)=x+16\end{matrix}\right.\)
ĐKXĐ: \(x\ge-2;y\ge0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) pt đầu trở thành:
\(a\left(a^2+1\right)=b\left(ab+1\right)\)
\(\Leftrightarrow a^3+a=ab^2+b\)
\(\Leftrightarrow a^3-ab^2+a-b=0\)
\(\Leftrightarrow a\left(a^2-b^2\right)+a-b=0\)
\(\Leftrightarrow a\left(a-b\right)\left(a+b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+1\right)=0\)
\(\Leftrightarrow a-b=0\) (do \(a^2+ab+1>0;\forall a\ge0;b\ge0\))
\(\Leftrightarrow\sqrt{x+2}=\sqrt{y}\)
\(\Rightarrow y=x+2\)
Thế vào pt dưới:
\(x^2+\left(x+3\right)\left(x+3\right)=x+16\)
\(\Leftrightarrow2x^2+5x-7=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=3\\x=-\dfrac{7}{2}< -2\left(loại\right)\end{matrix}\right.\)
Tìm x biết: \(\frac{4}{\left(x+2\right).\left(x+6\right)}+\frac{7}{\left(x+6\right).\left(x+13\right)}=\frac{2x+1}{\left(x+2\right).\left(x+16\right)}-\frac{3}{\left(x+13\right).\left(x+16\right)}\)
Vế trái: 4/(x+2).(x+6)+7/(x+6).(x+13)
<=>1/x+2 -1/x+6 +1/x+6 -1/x+13
<=>1/x+2-1/x+13
=> 1/x+2-1/x+13=2x+1/(x+2).(x+16) -3/(x+13).(x+16)
<=>1/x+2 - 1/x+13 + 1/x+13 - 1/x+16=2x+1/(x+2).(x+16)
<=>1/x+2 - 1/x+16=2x+1/(x+2).(x+16)
<=> 14/(x+2).(x+16)= 2x+1/(x+2).(x+16)
<=> 2x+1=14
<=> 2x=14-1
<=> 2x=13
<=> x=13:2
<=> x=13/2
Vậy x=13/2
Chắc là vầy. Mk cug ko chắc nữa
\(\text{Tìm x, biết:}\)
\(a\)) \(\left(19x+2.5^2\right):14=\left(13-8\right)^2-4^2\)
\(b\)) \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+30\right)=1240\)
\(c\)) \(11-\left(-53+x\right)=97\)
\(d\)) \(-\left(x+84\right)+213=-16\)
Biết \(\frac{7}{2}x^2-2xy-4x-y+\frac{13}{2}=A\left(x-2\right)^2+B\left(2x-y+1\right)^2\)
Tìm A và B