\(\sqrt{13-4\sqrt{3}}+\sqrt{13+4\sqrt{3}}\)
\(\sqrt{19-6\sqrt{2}}-\sqrt{19+6\sqrt{2}}\)
So sánh:
a) \(4\sqrt{7}\) và \(3\sqrt{13}\)
b) \(3\sqrt{12}\) và \(2\sqrt{16}\)
c) \(\dfrac{1}{4}\sqrt{84}\) và \(6\sqrt{\dfrac{1}{7}}\)
d) \(3\sqrt{12}\) và \(2\sqrt{16}\)
e) \(\dfrac{1}{2}\sqrt{\dfrac{17}{2}}\) và \(\dfrac{1}{3}\sqrt{19}\)
a: \(4\sqrt{7}=\sqrt{4^2\cdot7}=\sqrt{112}\)
\(3\sqrt{13}=\sqrt{3^2\cdot13}=\sqrt{117}\)
mà 112<117
nên \(4\sqrt{7}< 3\sqrt{13}\)
b: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)
\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)
mà 108>64
nên \(3\sqrt{12}>2\sqrt{16}\)
c: \(\dfrac{1}{4}\sqrt{84}=\sqrt{\dfrac{1}{16}\cdot84}=\sqrt{\dfrac{21}{4}}\)
\(6\sqrt{\dfrac{1}{7}}=\sqrt{36\cdot\dfrac{1}{7}}=\sqrt{\dfrac{36}{7}}\)
mà \(\dfrac{21}{4}>\dfrac{36}{7}\)
nên \(\dfrac{1}{4}\sqrt{84}>6\sqrt{\dfrac{1}{7}}\)
d: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)
\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)
mà 108>64
nên \(3\sqrt{12}>2\sqrt{16}\)
Rút gọn:
a) \(\sqrt{13+6\sqrt{4+\sqrt{9-4\sqrt{2}}}}\)
b) \(\left(\sqrt{3}-1\right)\sqrt{2\sqrt{19+8\sqrt{3}}-4}\)
c) \(\sqrt{5+2\sqrt{6}}+\sqrt{14-4\sqrt{6}}\)
d) \(\sqrt{5-2\sqrt{6}}+\sqrt{11-4\sqrt{6}}\)
a. \(\sqrt{13+6\sqrt{4+\sqrt{9-4\sqrt{2}}}}=\sqrt{13+6\sqrt{4+\sqrt{\left(\sqrt{8}-1\right)^2}}}=\sqrt{13+6\sqrt{4+\sqrt{8}-1}}=\sqrt{13+6\sqrt{3+\sqrt{8}}}=\sqrt{13+6\sqrt{\left(\sqrt{2}+1\right)^2}}=\sqrt{13+6\left(\sqrt{2}+1\right)}=\sqrt{13+6\sqrt{2}+6}=\sqrt{19+6\sqrt{2}}=\sqrt{\left(3\sqrt{2}+1\right)^2}=1+3\sqrt{2}\)
b. \(\left(\sqrt{3}-1\right)\sqrt{2\sqrt{19+8\sqrt{3}}-4}=\left(\sqrt{3}-1\right)\sqrt{2\sqrt{\left(4+\sqrt{3}\right)^2}-4}=\left(\sqrt{3}-1\right)\sqrt{8+2\sqrt{3}-4}=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}+1\right)^2}=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)
c. \(\sqrt{5+2\sqrt{6}}+\sqrt{14-4\sqrt{6}}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}+2\sqrt{3}-\sqrt{2}=3\sqrt{3}\)
d. \(\sqrt{5-2\sqrt{6}}+\sqrt{11-4\sqrt{6}}=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{3}\right)^2}=\sqrt{3}-\sqrt{2}+2\sqrt{2}-\sqrt{3}=\sqrt{2}\)
Tính giá trị biểu thức
\(T=(2\sqrt{3}+1)(3\sqrt{2}-1)\sqrt{13-4\sqrt{3}}.\sqrt{19+6\sqrt{2}}\)
\(T=\left(2\sqrt{3}+1\right)\left(3\sqrt{2}-1\right)\sqrt{13-4\sqrt{3}}.\sqrt{19+6\sqrt{6}}\)
\(T=\left(2\sqrt{3}+1\right)\left(3\sqrt{2}-1\right)\sqrt{\left(2\sqrt{3}-1\right)^2}.\sqrt{\left(3\sqrt{2}+1\right)^2}\)
\(T=\left(2\sqrt{3}+1\right)\left(3\sqrt{2}-1\right)\left|2\sqrt{3}-1\right|.\left|3\sqrt{2}+1\right|\)
\(T=\left(2\sqrt{3}+1\right)\left(3\sqrt{2}-1\right)\left(2\sqrt{3}-1\right)\left(3\sqrt{2}+1\right)\)
\(T=\left(2\sqrt{3}+1\right)\left(2\sqrt{3}-1\right)\left(3\sqrt{2}-1\right)\left(3\sqrt{2}+1\right)\)
\(T=11\cdot17\)
\(T=187\)
Phạm Thị Diệu Huyền lúc thì trai lúc thì gái ai biết bà :v
\(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2^6\right)}\)
rút gọn:giải chi tiết hộ mình nha
a) Ta có: \(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(=\sqrt{2}-1-3-\sqrt{2}\)
=-4
b) Ta có: \(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(=\sqrt{3}-1-2+\sqrt{3}+4+\sqrt{3}\)
\(=3\sqrt{3}+1\)
c) Ta có: \(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(=\sqrt{5}-1+\sqrt{5}-2-3+\sqrt{5}\)
\(=3\sqrt{5}-6\)
d) Ta có: \(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2\right)^6}\)
\(=\sqrt{7}-2+4-\sqrt{7}+8\)
=10
Tính giá trị biểu thức:
A= (4+ \(\sqrt{3}\)) \(\sqrt{19-8\sqrt[]{3}}\)
B= \(\dfrac{3}{4+\sqrt{13}}\)+ \(\dfrac{\sqrt{52}}{2}\) - 3
\(A=\left(4+\sqrt{3}\right)\sqrt{19-8\sqrt{3}}\)
\(A=\left(4+\sqrt{3}\right)\sqrt{4^2-2\cdot4\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(A=\left(4+\sqrt{3}\right)\sqrt{\left(4-\sqrt{3}\right)^2}\)
\(A=\left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right)\)
\(A=4^2-3\)
\(A=13\)
\(B=\dfrac{3}{4+\sqrt{13}}+\dfrac{\sqrt{52}}{2}-3\)
\(B=\dfrac{3\left(4-\sqrt{13}\right)}{\left(4-\sqrt{13}\right)\left(4+\sqrt{13}\right)}+\dfrac{2\sqrt{13}}{2}-3\)
\(B=\dfrac{3\left(4-\sqrt{13}\right)}{16-13}+\sqrt{13}-3\)
\(B=4-\sqrt{13}+\sqrt{13}-3\)
\(B=4-3\)
\(B=1\)
A=\(\sqrt{19-3\sqrt{ }40}\)-\(\sqrt{19+3\sqrt{ }40}\)
B=\(\sqrt{21-6\sqrt{ }6}\) +\(\sqrt{9+2\sqrt{ }18}\) -2\(\sqrt{6+3\sqrt{ }3}\)
C=\(\sqrt{6+2\sqrt{ }2\sqrt{ }3-\sqrt{ }4+2\sqrt{ }3}\)
D=\(\sqrt{4+\sqrt{ }15}\)-\(\sqrt{7-3\sqrt{ }5}\)
E=\(\sqrt{2+\sqrt{ }3}\)+\(\sqrt{2-\sqrt{ }3}\)
F=\(\sqrt{12-3\sqrt{ }7}\)-\(\sqrt{12+3\sqrt{ }7}\)
G=(3\(\sqrt{2}\)+\(\sqrt{6}\)).\(\sqrt{6-3\sqrt{ }3}\)
H=\(\sqrt{9-4\sqrt{ }5}-\sqrt{14-6\sqrt{ }5}\)
I=\(\sqrt{9-4\sqrt{ }2}\)-\(\sqrt{13-4\sqrt{ }3}\)
\(A=\sqrt{19-3\sqrt{40}}-\sqrt{19+3\sqrt{40}}=\sqrt{19-2\sqrt{90}}-\sqrt{19+2\sqrt{90}}=\sqrt{10-2.\sqrt{10}.3+9}-\sqrt{10+2.\sqrt{10}.3+9}=\sqrt{\left(\sqrt{10}-3\right)^2}-\sqrt{\left(\sqrt{10}+3\right)^2}=\sqrt{10}-3-\sqrt{10}-3=-6\)\(B=\sqrt{21-6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}=\sqrt{18-2.\sqrt{18}.\sqrt{3}+3}+\sqrt{6+2.\sqrt{3}.\sqrt{6}+3}-\sqrt{24+12\sqrt{3}}=\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{6}+\sqrt{\sqrt{3}}\right)^2}-\sqrt{\left(\sqrt{18}+\sqrt{6}\right)^2}=\sqrt{18}-\sqrt{3}+\sqrt{6}+\sqrt{3}-\sqrt{18}-\sqrt{6}=0\)
\(C=\sqrt{6+2\sqrt{2\sqrt{3-\sqrt{4+2\sqrt{3}}}}}\)
\(C=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
\(C=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\) \(=\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\) \(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
\(D=\sqrt{\frac{8+2\sqrt{15}}{2}}-\sqrt{\frac{14-6\sqrt{5}}{2}}\) \(=\sqrt{\frac{\left(\sqrt{5}+\sqrt{3}\right)^2}{2}}-\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{2}}\)
\(=\frac{\sqrt{5}+\sqrt{3}-3+\sqrt{5}}{\sqrt{2}}=\frac{2\sqrt{10}+\sqrt{6}-3\sqrt{2}}{2}\)
\(E=\sqrt{\frac{4+2\sqrt{3}}{2}}+\sqrt{\frac{4-2\sqrt{3}}{2}}\) \(=\sqrt{\frac{\left(\sqrt{3}+1\right)^2}{2}}+\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{2}}\)
\(=\frac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
\(F=\sqrt{\frac{24-6\sqrt{7}}{2}}-\sqrt{\frac{24+6\sqrt{7}}{2}}\) \(=\sqrt{\frac{21-2\sqrt{21\cdot3}+3}{2}}-\sqrt{\frac{21+2\sqrt{21\cdot3}+3}{2}}\)
\(=\sqrt{\frac{\left(\sqrt{21}-\sqrt{3}\right)^2}{2}}-\sqrt{\frac{\left(\sqrt{21}+\sqrt{3}\right)^2}{2}}\)
\(=\frac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}=\frac{-2\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)
\(G=\left(3+\sqrt{3}\right)\cdot\sqrt{12-6\sqrt{3}}\) \(=\left(3+\sqrt{3}\right)\cdot\sqrt{\left(3-\sqrt{3}\right)^2}\)
\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)=9-3=6\)
\(H=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(3-\sqrt{5}\right)^2}\) \(=\sqrt{5}-2-3-\sqrt{5}=-5\)
\(I=\sqrt{\left(2\sqrt{2}-1\right)^2}-\sqrt{\left(2\sqrt{3}-1\right)^2}\)
\(=2\sqrt{2}-1-2\sqrt{3}+1=2\sqrt{2}-2\sqrt{3}\)
Rút gọn biểu thức:
a) \(\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
b) \(\sqrt{6-2\sqrt{3+\sqrt{13+4\sqrt{3}}}}\)
c) \(\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
d) \(\sqrt{23-6\sqrt{10+4\sqrt{3-2\sqrt{2}}}}\)
\(a,=\sqrt{6+2\sqrt{3-2\sqrt{3}+1}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
\(b,=\sqrt{6-2\sqrt{3+\sqrt{12+2\sqrt{12}+1}}}\)
\(=\sqrt{6-2\sqrt{3+\sqrt{12}+1}}\)
\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}}\)
\(=\sqrt{6-2\left(\sqrt{3}+1\right)}=\sqrt{6-2\sqrt{3}-2}=\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3-2\sqrt{3}+1}=\sqrt{3}-1\)
\(c,=\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{4+2.2\sqrt{3}+3}}}\)
\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{\sqrt{3}+\sqrt{25-2.5\sqrt{3}+3}}\)
\(=\sqrt{\sqrt{3}+5-\sqrt{3}}=\sqrt{5}\)
\(d,=\sqrt{23-6\sqrt{10+4\sqrt{2-2\sqrt{2}+1}}}\)
\(=\sqrt{23-6\sqrt{6+4\sqrt{2}}}\)
\(=\sqrt{23-6\sqrt{4+2.2\sqrt{2}+2}}\)
\(=\sqrt{23-6\sqrt{\left(2+\sqrt{2}\right)^2}}\)
\(=\sqrt{23-12-6\sqrt{2}}=\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{9-2.3\sqrt{2}+2}=3-\sqrt{2}\)
a) Ta có: \(\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
b) Ta có: \(\sqrt{6-2\sqrt{3+\sqrt{13+4\sqrt{3}}}}\)
\(=\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)
\(=\sqrt{6-2\left(\sqrt{3}+1\right)}\)
\(=\sqrt{4-2\sqrt{3}}=\sqrt{3}-1\)
c) Ta có: \(\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{\sqrt{3}+5-\sqrt{3}}\)
\(=\sqrt{5}\)
d) Ta có: \(\sqrt{23-6\sqrt{10+4\sqrt{3-2\sqrt{2}}}}\)
\(=\sqrt{23-6\sqrt{10+4\left(\sqrt{2}-1\right)}}\)
\(=\sqrt{23-6\sqrt{6-4\sqrt{2}}}\)
\(=\sqrt{23-6\left(2-\sqrt{2}\right)}\)
\(=\sqrt{11+6\sqrt{2}}\)
\(=3+\sqrt{2}\)
Thực hiện phép tính
a, \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
b, \(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
c, \(\sqrt{1+\sqrt{3+\sqrt{13+4\sqrt{3}}}}+\sqrt{1-\sqrt{3-\sqrt{13-4\sqrt{3}}}}\)
d, \(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)
a,\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(=\sqrt{13+30\sqrt{3+2\sqrt{2}}}\\ =\sqrt{13+30\left(\sqrt{2}+1\right)}\)
\(=\sqrt{43+30\sqrt{2}}=5+3\sqrt{2}\)
b, \(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(\Leftrightarrow\sqrt{5-\sqrt{\left(2\sqrt{3}\right)^2+2.2\sqrt{3}+1}}+\sqrt{3+\sqrt{\left(2\sqrt{3}\right)^2+2.2\sqrt{3}+1}}\)
\(\Leftrightarrow\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}+\sqrt{3+\sqrt{\left(2\sqrt{3}+1\right)^2}}\)
\(\Leftrightarrow\sqrt{5-2\sqrt{3}-1}+\sqrt{3+2\sqrt{3}+1}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(\Leftrightarrow\sqrt{3}-1+\sqrt{3}+1\)
\(\Leftrightarrow2\sqrt{3}\)
d,\(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)
\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)\sqrt{3+2.\sqrt{2}\sqrt{3}+2}\)
\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\)
\(\Leftrightarrow3-2\Leftrightarrow1\)
Tính
G.\(\sqrt{7-2\sqrt{6}}\)
H.\(\sqrt{13-4\sqrt{3}}\)
I. \(\sqrt{7-4\sqrt{3}}\)\(-2\)
J.\(\sqrt{15-6\sqrt{6}}\)+\(\sqrt{33-12\sqrt{6}}\)
g: \(=\left|\sqrt{6}-1\right|=\sqrt{6}-1\)
h: \(=\left|2\sqrt{3}-1\right|=2\sqrt{3}-1\)
l: \(=\left|2-\sqrt{3}\right|-2=2-\sqrt{3}-2=-\sqrt{3}\)
j: \(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)