1) Với giá trị nào của x thì căn thức sau có nghĩa
a) \(\sqrt{x^2-8x+18}\)
b) \(\sqrt{3x-2}\)+ \(\sqrt{3-2x}\)
c) \(\sqrt{\frac{3x+4}{x-2}}\)
1) Với giá trị nào của x thì căn thức sau có nghĩa
a) \(\sqrt{x^2-8x+18}\)
b) \(\sqrt{3x-2}\)+ \(\sqrt{3-2x}\)
c) \(\sqrt{\frac{3x+4}{x-2}}\)
a) \(\sqrt{x^2-8x+18}=\sqrt{\left(x-4\right)^2+2}\)
Ta có:\(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2+2\ge0\)
Vậy biểu thức \(\sqrt{x^2-8x+18}\)thỏa mãn với mọi x.
b) Để \(\sqrt{3x-2}+\sqrt{3-2x}\)có nghĩa thì \(\hept{\begin{cases}3x-2>0\\3-2x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>\frac{2}{3}\\x< \frac{3}{2}\end{cases}}\Leftrightarrow\frac{2}{3}< x< \frac{3}{2}\)
Vậy \(ĐKXĐ:\frac{2}{3}< x< \frac{3}{2}\)
c) Để \(\frac{3x+4}{x-2}\)có nghĩa thì \(x\ne2\)
Để \(\sqrt{\frac{3x+4}{x-2}}\)thì 3x + 4 và x - 2 hoặc cùng dương hoặc cùng âm hoặc 3x + 4 = 0
\(TH1:3x+4=0\Leftrightarrow x=\frac{-4}{3}\)
\(TH2:\hept{\begin{cases}3x+4>0\\x-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{-4}{3}\\x>2\end{cases}}\Leftrightarrow x>2\)
\(TH3:\hept{\begin{cases}3x+4< 0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{-4}{3}\\x< 2\end{cases}}\Leftrightarrow x< \frac{-4}{3}\)
Câu b) Để \(\sqrt{3x-2}+\sqrt{3-2x}\)có nghĩa thì \(\hept{\begin{cases}3x-2\ge0\\3-2x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{2}{3}\\x\le\frac{3}{2}\end{cases}}\)
Vậy \(ĐKXĐ:\frac{2}{3}\le x\le\frac{3}{2}\)
1) Với giá trị nào của x thì căn thức sau có nghĩa
a) \(\sqrt{x^2-8x+18}\)
b) \(\sqrt{3x-2}\)+ \(\sqrt{3-2x}\)
c) \(\sqrt{\frac{3x+4}{x-2}}\)
1) Với giá trị nào của x thì căn thức sau có nghĩa
a) \(\sqrt{x^2-8x+18}\)
b) \(\sqrt{\frac{3x+4}{x-2}}\)
\(a,\sqrt{x^2-8x+18}=\sqrt{x^2-8x+16+2}\)
\(=\sqrt{\left(x-4\right)^2+2}\)
Vì \(\left(x-4\right)^2+2>0\)với \(\forall x\)
\(\Rightarrow\)Biểu thức luôn được xác định với mọi x
\(b,\sqrt{\frac{3x+4}{x-2}}\)
\(btxđ\Leftrightarrow\hept{\begin{cases}x-2\ne0\\\frac{3x+4}{x-2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\\frac{3x+4}{x-2}\ge0\end{cases}}}\)
\(\frac{3x+4}{x-2}\ge0\)\(\Rightarrow\orbr{\begin{cases}3x+4\ge0;x-2\ge0\\3x+4< 0;x-2< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-\frac{4}{3};x\ge2\\x< -\frac{4}{3};x< 2\end{cases}\Rightarrow\orbr{\begin{cases}x\ge2\\x< -\frac{4}{3}\end{cases}}}\)
Mà \(x\ne2\)\(\Rightarrow x>2\)hoặc \(x< -\frac{4}{3}\)
a,\(\sqrt{x^2-8x+18=\sqrt{x^2}-8x+16+2.}\)
\(=\sqrt{\left(x-4\right)^2+2}\)
Vì \(\left(x-4\right)^2+2>0\)với\(\forall x\)
\(\Rightarrow\)Biểu thức luônđược xác định với mọi x
b)\(\sqrt{\frac{3x+4}{x-2}}\)
\(btxđ\Leftrightarrow\hept{\begin{cases}x-2\ne0\\\frac{3x+4}{x-2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\\frac{3x+4}{x-2}\ge0\end{cases}}}\)
\(\frac{3x+4}{x-2}\ge0\Rightarrow\orbr{\begin{cases}3x+4\ge0;x-2\ge0\\3x+4< 0;x-2< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-\frac{4}{3};x\ge2\\x< \ge-\frac{4}{3};x< 2\end{cases}\Rightarrow\orbr{\begin{cases}x\ge2\\x< -\frac{4}{3}\end{cases}}}\)
\(\Rightarrow\)\(x< -\frac{4}{3};x\ne2\)
Với giá trị nào của x thì mỗi căn thức sau đây có nghĩa:
a) \(\sqrt{\dfrac{x}{3}}\)
b) \(\sqrt{-5x}\)
c) \(\sqrt{4-x}\)
d) \(\sqrt{3x+7}\)
e) \(\sqrt{-3x+4}\)
f) \(\sqrt{\dfrac{1}{-1+x}}\)
g) \(\sqrt{1+x^2}\)
h) \(\sqrt{\dfrac{5}{x-2}}\)
a) Để \(\sqrt{\dfrac{x}{3}}\) có nghĩa thì \(\dfrac{x}{3}\ge0\Leftrightarrow x\ge0\)
b) Để \(\sqrt{-5x}\) có nghĩa thì \(-5x\ge0\Leftrightarrow x\le0\)
c) Để \(\sqrt{4-x}\) có nghĩa thì \(4-x\ge0\Leftrightarrow x\le4\)
d) Để \(\sqrt{3x+7}\) có nghĩa thì \(3x+7\ge0\Leftrightarrow x\ge-\dfrac{7}{3}\)
e) Để \(\sqrt{-3x+4}\) có nghĩa thì \(-3x+4\ge0\Leftrightarrow x\le\dfrac{4}{3}\)
f) Để \(\sqrt{\dfrac{1}{-1+x}}\) có nghĩa thì \(\left\{{}\begin{matrix}\dfrac{1}{-1+x}\ge0\\-1+x\ne0\end{matrix}\right.\)
\(\Leftrightarrow-1+x>0\Leftrightarrow x>1\)
g) Để \(\sqrt{1+x^2}\) có nghĩa thì \(1+x^2\ge0\left(đúng\forall x\right)\)
h) \(\sqrt{\dfrac{5}{x-2}}\) có nghĩ thì \(\left\{{}\begin{matrix}\dfrac{5}{x-2}\ge0\\x-2\ne0\end{matrix}\right.\)
\(\Leftrightarrow x-2>0\Leftrightarrow x>2\)
a. \(x\ge0\)
b. \(x< 0\)
c. \(x\le4\)
d. \(x\ge\dfrac{-7}{3}\)
e. \(x\le\dfrac{4}{3}\)
f. \(x>1\)
g. Mọi x
h. \(x>2\)
Bài 1 Với giá trị nào của x thì căn thức sau có nghĩa:
a) \(\sqrt{2x^2+4x+5}\)
b) \(\sqrt{\dfrac{3x-2}{x^2-2x+4}}\)
1) Với giá trị nào của x thì căn thức sau có nghĩa
a) \(\sqrt{x^2-8x+18}\)
b) \(\sqrt{3x-2}\)+ \(\sqrt{3-2x}\)
c) \(\sqrt{\frac{3x+4}{x-2}}\)
Lời giải:
Để các biểu thức đã cho có nghĩa thì:
a) \(x^2-8x+18\geq 0\)
\(\Leftrightarrow x^2-8x+16+2\geq 0\)
\(\Leftrightarrow (x-4)^2+2\geq 0\Leftrightarrow x\in\mathbb{R}\)
b)
\(\left\{\begin{matrix} 3x-2\geq 0\\ 3-2x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{2}{3}\\ x\leq \frac{3}{2}\end{matrix}\right.\Leftrightarrow \frac{2}{3}\leq x\leq \frac{3}{2}\)
c)
\(\left\{\begin{matrix} x-2\neq 0\\ \frac{3x+4}{x-2}\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} 3x+4\geq 0; x-2>0\\ 3x+4\leq 0; x-2< 0\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x>2\\ x\leq \frac{-4}{3}\end{matrix}\right.\)
1) Với giá trị nào của x thì căn thức sau có nghĩa
a) \(\sqrt{x^2-8x+18}\)
b) \(\sqrt{3x-2}\)+ \(\sqrt{3-2x}\)
c) \(\sqrt{\frac{3x+4}{x-2}}\)
Để các biểu thức đã cho có nghĩa thì:
a) x2−8x+18≥0x2−8x+18≥0
⇔x2−8x+16+2≥0⇔x2−8x+16+2≥0
⇔(x−4)2+2≥0⇔x∈R⇔(x−4)2+2≥0⇔x∈R
b)
{3x−2≥03−2x≥0⇔{x≥23x≤32⇔23≤x≤32{3x−2≥03−2x≥0⇔{x≥23x≤32⇔23≤x≤32
c)
{x−2≠03x+4x−2≥0⇔[3x+4≥0;x−2>03x+4≤0;x−2<0{x−2≠03x+4x−2≥0⇔[3x+4≥0;x−2>03x+4≤0;x−2<0
⇔[x>2x≤−43
* Với giá trị nào của x thì các căn sau có nghĩa:
a.\(\sqrt{8x+2}\)
b.\(\sqrt{\dfrac{-5}{6-3x}}\)
* Tìm giá trị nhỏ nhất của:
A=\(x-2\sqrt{x-2}+3\)
$a)ĐK:8x+2\ge 0$
$\to 8x \ge -2$
$\to x \ge -\dfrac14$
$b)ĐK:\dfrac{-5}{6-3x} \ge 0(x \ne 2)$
Mà $-5<0$
$\to 6-3x<0$
$\to 6<3x$
$\to x>2$
$*A=x-2\sqrt{x-2}+3(x \ge 2)$
$=x-2-2\sqrt{x-2}+1+4$
$=(\sqrt{x-2}-1)^2+4 \ge 4$
Dấu "=" xảy ra khi $\sqrt{x-2}-1=0 \Leftrightarrow \sqrt{x-2}=1\Leftrightarrow x=3$
a) \(x\ge-\dfrac{1}{4}\)
b) x<2
Với giá trị nào của x thì các căn thức sau có nghĩa:
a, \(\sqrt{5x-10}\)
b, \(\sqrt{x^2-3x+2}\)
c, \(\sqrt{\dfrac{x+3}{5-x}}\)
d, \(\sqrt{x^2+4x-4}\)
a) ĐKXĐ: \(x\ge2\)
b) ĐKXĐ: \(\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)
c) ĐKXĐ: \(\dfrac{x+3}{5-x}\ge0\)
\(\Leftrightarrow\dfrac{x+3}{x-5}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow-3\le x< 5\)