so sánh hai căn thức sau
\(\sqrt{8}-\sqrt{2}và\sqrt{5}-\sqrt{3}và\sqrt{10}-\sqrt{7}\)
Bài 1: So sánh các căn bậc hai số học
a) 1 và\(\sqrt{3}-1\) b) 2 và \(\sqrt{2}+1\) c) 2\(\sqrt{31}\)và 10 d)\(\sqrt{2}+\sqrt{11}\)và \(\sqrt{3}+5\)
So sánh hai số sau:
\(\sqrt{6+2\sqrt{5}}-\sqrt{5}\) và \(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}\)
\(A=\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{5}+1-\sqrt{5}=1\)
\(B=\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
Do đó: A=B
\(\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}=\left|\sqrt{5}+1\right|-\sqrt{5}=1\)
\(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}\right)^3+1^3+3.2+3\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
--> Bằng nhau
so sánh
\(\sqrt{2}+\sqrt{3}\) và 2
\(\sqrt{8}+\sqrt{5}\) và \(\sqrt{7}-\sqrt{6}\)
\(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>2^2=4\left(5>4\right)\\ \Leftrightarrow\sqrt{2}+\sqrt{3}>2\)
\(\left(\sqrt{8}+\sqrt{5}\right)^2=13+2\sqrt{40};\left(\sqrt{7}-\sqrt{6}\right)^2=13-2\sqrt{42}\\ 2\sqrt{40}>0>-2\sqrt{42}\\ \Leftrightarrow13+2\sqrt{40}>13-2\sqrt{42}\\ \Leftrightarrow\left(\sqrt{8}+\sqrt{5}\right)^2>\left(\sqrt{7}-\sqrt{6}\right)^2\\ \Leftrightarrow\sqrt{8}+\sqrt{5}>\sqrt{7}-\sqrt{6}\)
\(\sqrt{2}\) + \(\sqrt{3}\) > 2
so sánh hai căn thức sau
6 và 4 +\(\sqrt{3}\) và 5+ \(\sqrt{2}\)
\(4+\sqrt{3}< 4+\sqrt{4}=4+2=6\)
Vậy \(6>4+\sqrt{3}\)
1.Phân tích căn thức sau :
\(4+\sqrt{3}< 4+\sqrt{4}=4+2=6\)
2.Cách làm
\(=>6>4+\sqrt{3}\)
3.cuối cùng
~Hk tốt~
So sánh:
a, 5+\(\sqrt{ }\)2 và 4+ \(\sqrt{ }\)3
b, \(\)\(\sqrt{ }\)8 - \(\sqrt{ }\)2 và \(\sqrt{ }\)5 - \(\sqrt{ }\)3
c, \(\sqrt{ }\)5 - \(\sqrt{ }\)3 và \(\sqrt{ }\)10 - \(\sqrt{ }\)7
c.
(\sqrt{5}-\sqrt{3})-(\sqrt{10}-\sqrt{7})=(\sqrt{5}+\sqrt{7})-(\sqrt{3}+\sqrt{10})
Mà:
\((\sqrt{5}+\sqrt{7})^2=12+\sqrt{35}< 12+\sqrt{36}=18\)
\((\sqrt{3}+\sqrt{10})^2=13+\sqrt{30}>13+\sqrt{25}=18\)
\(\Rightarrow \sqrt{3}+\sqrt{10}> \sqrt{5}+\sqrt{7}\Rightarrow \sqrt{5}-\sqrt{3}< \sqrt{10}-\sqrt{7}\)
Lời giải:
a.
$5+\sqrt{2}>5+\sqrt{1}=6$
$4+\sqrt{3}< 4+\sqrt{4}=6$
$\Rightarrow 5+\sqrt{2}>4+\sqrt{3}$
b.
$\sqrt{8}-\sqrt{2}=2\sqrt{2}-\sqrt{2}=\sqrt{2}$
$\sqrt{5}-\sqrt{3}=\frac{5-3}{\sqrt{5}+\sqrt{3}}=\frac{2}{\sqrt{5}+\sqrt{3}}< \frac{2}{\sqrt{2}}=\sqrt{2}$
Vậy $\sqrt{8}-\sqrt{2}>\sqrt{5}-\sqrt{2}$
Rút gọn căn thức sau:
\(B= \dfrac{\sqrt{7-\sqrt{5}}+\sqrt{7+\sqrt{5}}}{\sqrt{7+2\sqrt{11}}}.\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Ta có:\(\left(\sqrt{7-\sqrt{5}}+\sqrt{7+\sqrt{5}}\right)^2=7-\sqrt{5}+7+\sqrt{5}+2\sqrt{\left(7-\sqrt{5}\right)\left(7+\sqrt{5}\right)}=14+2\sqrt{44}=14+4\sqrt{11}\)
=>\(\sqrt{7-\sqrt{5}}+\sqrt{7+\sqrt{5}}=\sqrt{14+4\sqrt{11}}=\sqrt{2}.\sqrt{7+2\sqrt{11}}\)
=>B=\(\dfrac{\sqrt{2}.\sqrt{7+2\sqrt{11}}}{\sqrt{7+2\sqrt{11}}}\cdot\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
=\(\sqrt{2}\cdot\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)(mình làm tắt tách 4=2+2=\(\sqrt{4}+\sqrt{4}\))
=\(\sqrt{2}\)\(\cdot\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\sqrt{2}\cdot\left(1+\sqrt{2}\right)=2+\sqrt{2}\)
\(B=\dfrac{\sqrt{7-\sqrt{5}}+\sqrt{7+\sqrt{5}}}{\sqrt{7+2\sqrt{11}}}.\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(B=\dfrac{\sqrt{14-2\sqrt{5}}+\sqrt{14+2\sqrt{5}}}{\sqrt{2}.\sqrt{7+2\sqrt{11}}}.\dfrac{\sqrt{2}+\sqrt{3}+2+\sqrt{6}+\sqrt{8}+2}{\sqrt{2}+\sqrt{3}+2}\)
\(B=\dfrac{\sqrt{\left(\left(\sqrt{7+2\sqrt{11}}\right)-\left(\sqrt{7-2\sqrt{11}}\right)\right)^2}+\sqrt{\left(\left(\sqrt{7+2\sqrt{11}}\right)+\left(7-2\sqrt{11}\right)\right)^2}}{\sqrt{2}.\sqrt{7+2\sqrt{11}}}.\dfrac{\sqrt{2}+\sqrt{3}+2+\sqrt{2}\left(\sqrt{3}+2+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+2}\)
\(B=\dfrac{\sqrt{7+2\sqrt{11}}-\sqrt{7-2\sqrt{11}}+\sqrt{7+2\sqrt{11}}+\sqrt{7-2\sqrt{11}}}{\sqrt{2}.\sqrt{7+2\sqrt{11}}}.\dfrac{\left(\sqrt{2}+\sqrt{3}+2\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+2}\)
\(B=\dfrac{2.\sqrt{7+2\sqrt{11}}}{\sqrt{2}.\sqrt{7+2\sqrt{11}}}.\left(1+\sqrt{2}\right)\)
\(B=\sqrt{2}.\left(1+\sqrt{2}\right)=\sqrt{2}+2\)
1)so sánh 2 số sau M=\(\sqrt{18}-\sqrt{8}\) và N=\(\dfrac{5+\sqrt{5}}{\sqrt{5}+1}-\sqrt{6-2\sqrt{5}}\)
2)cho biểu thức A=\((\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}):(\dfrac{x-4}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}})\) với x>0,\(x\ne4\),\(x\ne9\)
câu 2 rút gọn A và tìm các giá trị nguyên của x để A nhận giá trị âm
1) So sánh:
N = \(\dfrac{5+\sqrt{5}}{\sqrt{5}+1}-\sqrt{6-2\sqrt{5}}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}-\left(\sqrt{5}-1\right)=1\)
M = \(\sqrt{18}-\sqrt{8}\)
\(=3\sqrt{2}-2\sqrt{2}\)
\(=\sqrt{2}\)
Ta có: \(1=\sqrt{1}\)
Mà 1 < 2
\(\Rightarrow\sqrt{1}< \sqrt{2}\)
Hay 1 \(< \sqrt{2}\)
Vậy N < M
2) Với \(x>0;x\ne4;x\ne9\), ta có:
A = \(\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{x-4}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{2x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\left[\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right]\)
\(=\dfrac{x-3\sqrt{x}-2x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{x-4-2\sqrt{x}+6}{\sqrt{x}\left(\sqrt{x-3}\right)}\)
\(=\dfrac{-x-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-2\sqrt{x}+2}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-2\sqrt{x}+2}\)
\(=\dfrac{-x}{x-2\sqrt{x}+2}\)
So sánh hai số sau (không dùng máy tính):
a) 1 và \(\sqrt{2}\)
b) 2 và \(\sqrt{3}\)
c) 6 và \(\sqrt{41}\)
d) 7 và \(\sqrt{47}\)
e) 2 và \(\sqrt{2}+1\)
f) 1 và \(\sqrt{3}-1\)
g) 2\(\sqrt{31}\) và 10
h) \(\sqrt{3}\) và -12
i) -5 và \(-\sqrt{29}\)
giúp e với ạ, em cần gấp
a) \(1=\sqrt{1}< \sqrt{2}\)
b) \(2=\sqrt{4}>\sqrt{3}\)
c) \(6=\sqrt{36}< \sqrt{41}\)
d) \(7=\sqrt{49}>\sqrt{47}\)
e) \(2=1+1=\sqrt{1}+1< \sqrt{2}+1\)
f) \(1=2-1=\sqrt{4}-1>\sqrt{3}-1\)
g) \(2\sqrt{31}=\sqrt{4.31}=\sqrt{124}>\sqrt{100}=10\)
h) \(\sqrt{3}>0>-\sqrt{12}\)
i) \(5=\sqrt{25}< \sqrt{29}\)
\(\Rightarrow-5>-\sqrt{29}\)
Câu 1: Kết quả so sánh 3 và căn 8là:
A. 3 > \(\sqrt{8}\) B. 3 < \(\sqrt{8}\) C. 3 ≤ \(\sqrt{8}\) D. \(\sqrt{3}\)< \(\sqrt{8}\)
Câu 2. \(\sqrt{3x-2}\) xác định khi và chỉ khi:
A. x ≥ 0 B. x ≥ \(\dfrac{2}{3}\) C. x ≥ \(\dfrac{3}{2}\) D. x < \(\dfrac{2}{3}\)
Câu 3. \(\sqrt{\left(1-\sqrt{2}\right)^2}\) bằng:
A. \(3-2\sqrt{2}\) B. \(1-\sqrt{2}\) C. \(\sqrt{2}-1\) D. \(2\sqrt{2}+3\)
Câu 4. Kết quả của phép đưa thừa số ra ngoài dấu căn của biểu thức \(\sqrt{a^2b}\) (với a≥ 0; b ≥ 0) là:
A. \(-b\sqrt{a}\) B. \(b\sqrt{a}\) C .\(a\sqrt{b}\) D. \(-a\sqrt{b}\)
Câu 5. Khử mẫu của biểu thức \(\sqrt{\dfrac{2a}{b}}\) (với a b cùng dấu) ta được:
A. \(\dfrac{\sqrt{2ab}}{a}\) B. \(\dfrac{\sqrt{2ab}}{b}\) C. \(\dfrac{\sqrt{2ab}}{-b}\) D. \(\dfrac{\sqrt{2ab}}{\left|b\right|}\)
Câu 6: Hàm số y = \(\sqrt{5-m}.x+\dfrac{2}{3}\)là hàm số bậc nhất khi:
A. m ≠ 5 B. m > 5 C. m < 5 D. m = 5
Câu 7: Cho 3 đường thẳng (d1) : y = - 2x +1, (d2): y = x + 2, (d3) : y = 1 – 2x. Đường thẳng tạo với trục Ox góc nhọn là:
A. (d1) B. (d2) C. (d3) D. (d1) và (d3)
Câu 8: Hai đường thẳng y = -3x +4 và y = (m+1)x +m song song với nhau khi m bằng:
A. 4 B. -2 C. -3 D. -4
Câu 9. Hàm số bậc nhất nào sau đây nghịch biến?
A. y = \(7+\left(\sqrt{2}-3\right)x\) B. y = \(4-\left(1-\sqrt{3}\right)x\) C. y = \(-5-\left(1-\sqrt{2}\right)x\) D. y = 4+ x
Câu 10. Cặp đường thẳng nào sau đây có vị trí trùng nhau?
A. y=x +2 và y= -x+2 B. y= -3-2x và y= -2x-3
C. y= 2x -1 và y= 2+3x D. y=1 – 2x và y= -2x+3
Câu 11: Đường thẳng có phương trình x + y = 1 cắt đồ thị nào sau đây?
A.y+ x = -1 B. 2x + y = 1 C. 2y = 2 – 2x D. 3y = -3x +1
Câu 12: Cặp số (x; y) nào sau đây là một nghiệm của phương trình 2x – y = 1?
A.(1; -1) B. ( -1; 1) C. (3;2) D. (2; 3)