Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hương Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 2 2022 lúc 20:44

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường trung trực

hay AH là trục đối xứng của ΔABC

b: Xét ΔABC có 

E là trung điểm của AB

M là trung điểm của AC

Do đó: EM là đường trung bình

=>EM//BC và EM=BC/2

hay EM//BH; EM=BH

Xét tứ giác BEMC có ME//BC

nên BEMC là hình thang

mà \(\widehat{EBC}=\widehat{MCB}\)

nên BEMC là hình thang cân

Xét tứ giác BEMH có ME//BH và ME=BH

nên BEMH là hình thang cân

Xét ΔABC có

H là trung điểm của BC

M là trung điểm của AC

Do đó: HM là đường trung bình

=>HM//AB và HM=AB/2

hay HM//AE và HM=AE
=>AEHM là hình bình hành

mà AE=AM

nên AEHM là hình thoi

Trần Đức Huy
6 tháng 2 2022 lúc 20:45

Anh Nguyễn
Xem chi tiết
Trương Trường An
9 tháng 6 2019 lúc 11:51

1A)  Gọi I là giao điểm của EF và AB                                                                                                                                                                   Vì EF là đường trung trực của MB nên BE=BF                                                                                                                                             xét hai tam giác BEI và BFI thì chúng bằng nhau ( t. hợp ch-cgv)                                                                                                                 IE=IF; EF vuông góc AB  =) E và F đối xứng nhau qua AB nên ta chứng minh  được hai tam giác BEI và BF1 bằng nhau.                   1b) gọi I là giao điểm của MB và EF
ta có EI là đường trung bình của tam giác MEB 
nên tam giác MEB cân tại E => góc EMB = góc EBM
có EI là đường cao đồng thời là đường phân giác
nên góc MEI = góc BEI
ta có MN//BC//AD
hay ME//BF
nên góc MFI = góc IFB; góc EMB = góc FBM ( 2 góc slt)
mà góc MEI = góc BEI 
nên góc IFB = góc BEI
=> tam giác BEF cân tại B
lại có BI là tia phân giác (góc EBI = góc FBI=góc EMI)
hay BI là đường trung tuyến
ta có EF vuông góc với MB 
I là trung điểm của MB và EF
nên tứ giác MEBF là hình thoi                                                                                                                                                                   1c)*Vì EB // NC nên EBCN là hình thang có 2 đáy là EB và NC
để EBCN là hình thang cân thì EN = BC

Thương Nguyễn
Xem chi tiết
Thùy Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 3 2022 lúc 13:15

a: ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường trung trực của BC

=>AH là trục đối xứng của ΔABC

b: Xét ΔABC có

E là trung điểm của AB

M là trung điểm của AC
Do đó: EM là đường trung bình

=>EM//BC và EM=1/2BC

Xét tứ giác BEMC có EM//BC

nên BEMC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BEMC là hình thang cân

Xét tứ giác BEMH có 

EM//BH

EM=BH

Do đó; BEMH là hình bình hành

Xét tứ giác AEHM có

HM//AE

HM=AE

Do đó: AEHM là hình bình hành

mà AE=AM

nên AEHM là hình thoi

Minh Uyen Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2021 lúc 0:30

b: Xét tứ giác ABHM có 

AM//BH

AM=BH

Do đó: ABHM là hình bình hành

Suy ra: B đối xứng M qua D

Bạch Tố Như
Xem chi tiết

https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem

Bạn xem tại link này nhé

Học tốt!!!!!!

Khách vãng lai đã xóa
HELP ME
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2021 lúc 10:27

1: Xét tứ giác AHCE có 

I là trung điểm của AC

I là trung điểm của HE

Do đó: AHCE là hình bình hành

mà \(\widehat{HAC}=90^0\)

nên AHCE là hình chữ nhật

Suy ra: AC=HE

trường trần
Xem chi tiết
Nya arigatou~
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 6 2022 lúc 9:59

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là trung trực của BC

=>AH là trục đối xứng của ΔABC

b: Xét ΔABC có

E là trung điểm của AB

M là trung điểm của AC

Do đó: EM là đường trung bình

=>EM//BC và EM=BC/2

Xét tứ giác BEMC có EM//BC

nên BEMC là hình thang

mà \(\widehat{EBC}=\widehat{MCB}\)

nên BEMC là hình thang cân

Xét tứ giác BEMH có

EM//BH

EM=BH

Do đó: BEMH là hình bình hành

Xét tứ giác AEHM có

HM//AE
HM=AE

Do đó AEHMlà hình bình hành

mà AM=AE

nên AEHM là hình thoi

c: Để AEHM là hình vuông thì \(\widehat{BAC}=90^0\)