Cho tam giác ABC cân tại A. Đường cao AH và E, M thứ tự là trung điểm AB và AC
a/Chứng minh AH là trục đối xứng của tam giác ABC ?
b/ Các tứ giác EMCB , BEMH , AEHM là hình gì? vì sao?
c/ Tìm điều kiện tam giác ABC để AEHM là hình vuông ?
Trong trường hợp này tính diện tích tam giác BHE. Biết AB = 4cm
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường trung trực
hay AH là trục đối xứng của ΔABC
b: Xét ΔABC có
E là trung điểm của AB
M là trung điểm của AC
Do đó: EM là đường trung bình
=>EM//BC và EM=BC/2
hay EM//BH; EM=BH
Xét tứ giác BEMC có ME//BC
nên BEMC là hình thang
mà \(\widehat{EBC}=\widehat{MCB}\)
nên BEMC là hình thang cân
Xét tứ giác BEMH có ME//BH và ME=BH
nên BEMH là hình thang cân
Xét ΔABC có
H là trung điểm của BC
M là trung điểm của AC
Do đó: HM là đường trung bình
=>HM//AB và HM=AB/2
hay HM//AE và HM=AE
=>AEHM là hình bình hành
mà AE=AM
nên AEHM là hình thoi