Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Anh Nguyễn
Bài 1: Cho hbh ABCD. Trên các cạnh AB, CD lần lượt lấy các điểm M, N sao cho AMDN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E, F. Chứng minh rằng:a) E và F đối xứng qua ABb) MEBF là hình thoic) Hbh ABCD phải có thêm điều kiện gì để BCNE là hình thang cân?Bài 2: Cho tam giác ABC cân tại A. Đường cao AH và E, M thứ tự là trung điểm AB và AC.a) chứng minh AH là trục đối xứng của tam giác ABC?b) các tứ giác EMCB, BEMH, AEHM là hình gì? vì sao?c) tìm điều kiện tam giác ABC để...
Đọc tiếp

Những câu hỏi liên quan
Nguyễn Gia Bảo
Xem chi tiết
kim xuyến
Xem chi tiết
Nguyen thi Mi
16 tháng 12 2017 lúc 18:33
xét 2 tam giác vuông rồi tính luôn để như thế
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 3 2017 lúc 15:55

a) Do AM = DN Þ MADN là hình bình hành

⇒   D ^ = A M N ^ = E M B ^ = M B C ^  

Ta có DMPE = DBPE nên EP = FP. Vậy MEBF là hình thoi và 2 điểm E, F đối xứng nhau qua AB.

b) Tứ giác MEBF có MB Ç EF = P; Lại có P trung điểm BM, P là trung điểm EF, MB ^ EF.

Þ  MEBF là hình thoi.

c) Để BNCE là hình thang cân thì C N E ^ = B E N ^  

C N E ^ = D ^ = M B C ^ = E B M ^  nên DMEB có 3 góc bằng nhau, suy ra điều kiện để BNCE là hình thang cân thì  A B C ^ = 60 0

Tố Quyên
Xem chi tiết
HaNa
22 tháng 8 2023 lúc 12:07

.a.

Vì `EF` là đường trung trực MB.

=> `EM=EB`

=> `ΔEMB` cân tại E

=> \(\widehat{EMB}=\widehat{EBM}\)

Chứng minh tương tự được: \(\widehat{FMB}=\widehat{FBM}\)

Vì `AM=DN` mà AM//DN

=> Tứ giác `AMND` là hình bình hành.

b.

Từ câu (a) suy ra: 

ME//BF

BE//FM

=> Hình bình hành MEBF có `EF⊥MB`

=> Tứ giác MEBF là hình thoi

hà thảo ly
Xem chi tiết
Tran Thi Xuan
Xem chi tiết
Dương công việt anh
14 tháng 12 2017 lúc 13:32

 BÀI 1: Gọi I là giao điểm của EF và AB 
Vì EF là đường trung trực của MB nên BE = BF 
Xét hai tam giác BEI và BFI thì chúng bằng nhau ( t.hợp ch-cgv) 
=> IE = IF; EF vuông góc AB 
=> E và F đối xứng nhau qua AB 
* xét tứ giác MEBF có : 
- EM = EB; FM = FB ( È là đường trung trực của MB) 
mà E và F đối xứng nhau qua AB nên ta c/m được hai tam giác BEI và BFI bằng nhau ( t.hợp ch-cgv) 
=> EM = EB = FM = FB 
=> MEBF là hình thoi 
*Vì EB // NC nên EBCN là hình thang có 2 đáy là EB và NC 
để EBCN là hình thang cân thì EN = BC

Nguyễn Nam
Xem chi tiết
Nguyễn Yến Nhi
Xem chi tiết
Hoàng Ngọc Tuyết Nhung
Xem chi tiết
Nguyễn Hà Vi
Xem chi tiết
Kiều Vũ Linh
18 tháng 9 2023 lúc 7:43

loading... Do ABCD là hình bình hành

⇒ AB // CD

⇒ AM // DN

Tứ giác AMND có:

AM = DN (gt)

AM // DN (cmt)

⇒ AMND là hình bình hành

⇒ MN // AD

Mà AD // BC (ABCD là hình bình hành)

⇒ MN // BC

⇒ ∠GME = ∠GBF (so le trong)

Do EF là đường trung trực của BM

⇒ GM = GB

Xét hai tam giác vuông: ∆GME và ∆GBF có:

GM = GB (cmt)

∠GME = ∠GBF (cmt)

⇒ ∆GME = ∆GBF (cạnh góc vuông-góc nhọn kề)

⇒ GE = GF (hai cạnh tương ứng)

⇒ G là trung điểm của EF

Mà BM ⊥ EF

⇒ BM là đường trung trực của EF

Hay AB là đường trung trực của EF