Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thiên Yết
Xem chi tiết
Bình Trần Thị
Xem chi tiết
vvvvvvvv
Xem chi tiết
Giúp mik với mấy bn ơi C...
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 11 2021 lúc 14:01

\(2x^2-4x+5=2\left(x^2-2x+1\right)+3=2\left(x-1\right)^2+3\ge3\)

\(\Rightarrow y\ge2+2\sqrt{3}\)

\(y_{min}=2+2\sqrt{3}\) khi \(x=1\)

vvvvvvvv
Xem chi tiết
BiBo MoMo
Xem chi tiết
12345678901
14 tháng 9 2020 lúc 21:24

ko bt tự làm đi!!
 

Khách vãng lai đã xóa
Nguyễn Quốc Việt
Xem chi tiết
Akai Haruma
30 tháng 8 2021 lúc 16:59

Lời giải:

$y=2\sin ^2x+\sqrt{3}\sin 2x=1-\cos 2x+\sqrt{3}\sin 2x$

$=1-(\cos 2x-\sqrt{3}\sin 2x)$

Áp dụng BĐT Bunhiacopxky:

$(\cos 2x-\sqrt{3}\sin 2x)^2\leq (\cos ^22x+\sin ^22x)(1+3)=4$

$\Rightarrow \cos 2x-\sqrt{3}\sin 2x\leq 2$

$\Rightarrow y=1-(\cos 2x-\sqrt{3}\sin 2x)\geq -1$

Vậy $y_{\min}=-1$. Giá trị này đạt tại $x=\frac{5\pi}{6}+2k\pi$ hoặc $x=\frac{-\pi}{6}+2k\pi$ với $k$ nguyên bất kỳ.

vvvvvvvv
Xem chi tiết
Hồng Phúc
1 tháng 7 2021 lúc 21:36

\(y=2cos^2x-2\sqrt{3}sinx.cosx+1\)

\(=2cos^2x-1-2\sqrt{3}sinx.cosx+2\)

\(=cos2x-\sqrt{3}sin2x+2\)

\(=2\left(\dfrac{1}{2}cos2x-\dfrac{\sqrt{3}}{2}sin2x\right)+2\)

\(=2cos\left(2x+\dfrac{\pi}{3}\right)+2\)

Ta có: \(cos\left(2x+\dfrac{\pi}{3}\right)\in\left[-1;1\right]\)

\(\Rightarrow min=0\Leftrightarrow cos\left(2x+\dfrac{\pi}{3}\right)=-1\Leftrightarrow2x+\dfrac{\pi}{3}=\pi+k2\pi\Leftrightarrow x=\dfrac{\pi}{3}+k\pi\)

\(\Rightarrow max=4\Leftrightarrow cos\left(2x+\dfrac{\pi}{3}\right)=1\Leftrightarrow2x+\dfrac{\pi}{3}=k2\pi\Leftrightarrow x=-\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)

Nguyễn Thị Ngọc Thơ
1 tháng 7 2021 lúc 21:36

\(y=2cos^2x-\sqrt{3}sin2x+1=cos2x-\sqrt{3}sin2x+2\)

\(y=2.cos\left(2x+\dfrac{\pi}{3}\right)+2\)

\(\forall x\in R->-1\le cos\left(2x+\dfrac{\pi}{3}\right)\)

=> \(Min_y=2.\left(-1\right)+2=0\) 

Mặt khác, theo Bunhiacopxki:

\(\left(cos2x+\sqrt{3}sin2x\right)^2\le\left(1^2+\sqrt{3}^2\right)\left(cos^22x+sin^22x\right)=4\)

=>\(Max_y=4\)

 

Big City Boy
Xem chi tiết