Lời giải:
$y=2\sin ^2x+\sqrt{3}\sin 2x=1-\cos 2x+\sqrt{3}\sin 2x$
$=1-(\cos 2x-\sqrt{3}\sin 2x)$
Áp dụng BĐT Bunhiacopxky:
$(\cos 2x-\sqrt{3}\sin 2x)^2\leq (\cos ^22x+\sin ^22x)(1+3)=4$
$\Rightarrow \cos 2x-\sqrt{3}\sin 2x\leq 2$
$\Rightarrow y=1-(\cos 2x-\sqrt{3}\sin 2x)\geq -1$
Vậy $y_{\min}=-1$. Giá trị này đạt tại $x=\frac{5\pi}{6}+2k\pi$ hoặc $x=\frac{-\pi}{6}+2k\pi$ với $k$ nguyên bất kỳ.