\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
P=\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
\(P=\frac{2\left(\sqrt{8}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-\sqrt{8}\right)}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\)
\(=-\frac{2}{\sqrt{6}}-\frac{1}{\sqrt{6}}=\frac{-3}{\sqrt{6}}=-\frac{\sqrt{6}}{2}\)
Trả lời:
\(P=\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
\(P=\frac{2\sqrt{8}-2\sqrt{3}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
\(P=\frac{2.\left(\sqrt{8}-\sqrt{3}\right)}{\sqrt{6}.\left(\sqrt{3}-\sqrt{8}\right)}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{6}.\left(\sqrt{5}+\sqrt{27}\right)}\)
\(P=\frac{-2.\left(\sqrt{3}-\sqrt{8}\right)}{\sqrt{6}.\left(\sqrt{3}-\sqrt{8}\right)}-\frac{1}{\sqrt{6}}\)
\(P=\frac{-2}{\sqrt{6}}-\frac{1}{\sqrt{6}}\)
\(P=\frac{-3}{\sqrt{6}}\)
\(P=\frac{-\sqrt{6}}{2}\)
Học tốt
\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}\)-\(\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18-\sqrt{48}}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\) = ?
tìm ĐKXĐ rồi đặt nhân tử chung rút gọn nêu rút gọn vẫn còn căn ở mẫu thì trục căn sau đó quy đồng giải bình thường
Tính
\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
Tính
\(\frac{2.\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
Tính : a) \(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
Tính : a)\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
Tính: \(\frac{2\sqrt{8}-\sqrt{27}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
Thực hiện phép tính :
P = \(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
Ta có: \(P=\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
\(=\frac{2\left(\sqrt{8}-\sqrt{3}\right)}{-\sqrt{6}\left(\sqrt{8}-\sqrt{3}\right)}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\)
\(=\frac{-\sqrt{2}}{\sqrt{3}}-\frac{1}{\sqrt{6}}\)
\(=\frac{-2-1}{\sqrt{6}}=\frac{-3}{\sqrt{6}}=\frac{-\sqrt{3}}{\sqrt{2}}\)